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1 Introduction 

This document describes the Scalable Modeling System (SMS) and shows how SMS 
directives can be used to parallelize a serial Fortran program for distributed or shared 
memory machines.  SMS is intended for use with programs that perform computations on 
regular gridded data sets.  The primary application area thus far has been weather, ocean, 
and climate models.  SMS has been used to parallelize models that use explicit finite 
difference approximation (FDA) or spectral transform methods.  SMS is general enough 
to be useful for parallelizing similar programs in other application areas.   

Before reading this document, the reader should first read the companion overview 
document "SMS:  A Directive-Based Parallelization Tool for Shared and Distributed 
Memory High Performance Computers".  It is assumed that the reader of this User’s 
Guide is familiar with the concepts and terms introduced in the overview document.  The 
reader should also be familiar with basic parallel processing concepts such as distributed 
and shared memory, message latency and bandwidth, the Single Program Multiple Data 
(SPMD) programming model, and dependence analysis.  The overview document 
describes these concepts briefly and contains references for further reading.  After 
reading this User’s Guide, the reader should have a good understanding of the steps that 
need to be taken to parallelize a serial program using SMS directives.  If more detailed 
information about any directive is needed, the reader should refer to the companion 
reference document, "SMS Reference Manual".   

1.1 Organization of this Document 

The SMS User’s Guide begins by introducing the SMS directives in their simplest form.  
Section 2 introduces the most fundamental SMS directives with simple example 
programs that use the method of explicit finite difference approximation.  This section 
also introduces other SMS directives that are useful in transform-based programs such as 
spectral numerical weather prediction (NWP) models.  The remaining sections describe 
in detail how the SMS directives are used in more complex situations.  Section 3 explains 
how to divide work among multiple processes by the method of data decomposition and 
how to parallelize loops.  Additional loop index translations needed during parallelization 
are described in Section 4.  Sections 5, 6 and 7 cover further details about the inter-
process communication directives introduced in Section 2.  Section 8 describes a method 
by which parallelization can be done incrementally.  Section 9 addresses periodic 
boundary conditions.  Section 10 describes SMS support for mesh refinement (nesting) 
and coupling between different grids.  Section 12 discusses parallel I/O.  Directives that 
control program termination are dealt with in Section 14.  Section 15 discusses debugging 
tools.  Sections 16 and 17 explain how to build and run parallel SMS programs.   
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1.2 Terms and Conventions 

Throughout most of this document, the term "process" is used instead of "processor" or 
"CPU".  "Process" is slightly more general because it is possible to run more than one 
process on a single "processor" (and this may actually make sense on some types of 
CPU's that provide direct hardware support for multi-threaded applications).  However, 
on most machines there will be a one-to-one mapping of processes to processors.   

Fortran source code will appear in courier font.  When program source code appears 
inside the main body of text, it will also be italicized.  Large blocks of code will 
include line numbers to simplify discussions.  Commands will also appear in courier 
font and will be preceded by a generic command line prompt, ">>”.  The results of 
commands will appear in courier font as well.  Warning messages output by SMS will 
be courier bold.  File names will appear in italics when not in code examples or 
command lines.  SMS directives will appear in bold in code examples.   When directive 
arguments appear in the text they will be courier font, bold and
italicized. Sometimes example code will be a slightly modified version of a 
previous example.  In that case, the changed lines will be highlighted.   
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2 Getting Started 

2.1 Basic Parallelization Steps 

The first step in any parallelization effort is to understand the performance characteristics 
of the serial program.  Program components that take little time to run may not need to be 
parallelized at all.  The second step is to perform dependence analysis to identify the 
places in the code where inter-process communication may be required.  Dependencies 
will be discussed as relevant SMS directives are introduced.  A strategy for dividing the 
work among the processes must then be chosen.  SMS uses the method of domain 
decomposition in which portions of large arrays, and their associated computations, are 
assigned to each process.  The dependence analysis is used to help pick optimal 
decompositions that will minimize inter-process communication.  The final step is to add 
SMS directives to parallelize the code.   

To build the parallel program, the Parallelizing Pre-Processor (PPP, a component of 
SMS) is first run to translate the source code with directives into new parallel source 
code.  The translated source code is then compiled and linked with the SMS library to 
produce an executable program that can be run on multiple processes.  The smsRun 
command is used to run the parallel program.  The debugging features of SMS can then 
be used to test the parallel program.   

SMS supports ANSI standard Fortran77 and Fortran90 language features such as full 
array assignment, allocatable arrays, namelist, pointer, include, do-enddo, automatic 
arrays, and while statements.  Partial support of modules is also offered (modules may 
contain variable declarations but not subroutines).  Currently, only fixed-format source 
code is accepted.  A more detailed description of supported language features can be 
found at the following SMS web site:   

http://www-ad.fsl.noaa.gov/ac/SMS_Supported_Fortran_Features.html 

2.2 A Very Simple Program 

Below is a simple Fortran program that prints a message on the screen:   

program basic_ex1
print *,'HELLO'
end

If this program were stored in a file named basic_ex1.f, it could be built using the 
following command:   

>> f90 -o basic_ex1 basic_ex1.f

The above command assumes that the Fortran compiler is named “f90”.  When run, the 
program produces the expected output on the screen:   

http://www-ad.fsl.noaa.gov/ac/SMS_Supported_Fortran_Features.html
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>> basic_ex1

HELLO

This program is simple enough that a parallel version can be built directly without adding 
any SMS directives.  To build with SMS, first run the Parallel Pre-Processor (PPP) to 
convert the print statements into parallel print statements:   

>> ppp basic_ex1.f

The above command assumes that the SMS environment variable has been correctly set 
and that $SMS/bin is in the current path.  For example, if SMS is located in the directory 
/usr/local/sms/ then (assuming a c-shell environment) the SMS environment variable 
should be set as follows:   

>> setenv SMS /usr/local/sms

The path could be modified using a command like this:   

>> set path= ( $SMS/bin $path )

See Section 17.3 for details about setting other environment variables used by SMS.  
SMS translates the serial code in basic_ex1.f into parallel code and places the result in 
file basic_ex1_sms.f.  Depending on the configuration of SMS, other temporary files may 
also be created.  The next step is to compile basic_ex1_sms.f and link it to the SMS 
library.   

>> f90 -c -I$SMS/include basic_ex1_sms.f
>> f90 -o basic_ex1_sms -I $SMS/include basic_ex1_sms.o -L$SMS/lib \

-lsms -lmpi

The above example assumes common behavior for f90 options "-I" (specify path for 
include files) and "-L" (specify path for libraries).  Some Fortran compilers handle these 
options in slightly different ways.  Note that link argument "-lmpi" links to the Message 
Passing Interface (MPI) library.  SMS uses MPI to perform underlying low-level inter-
process communication on most supported machines.  Some machines may require 
different linkers or linker arguments to link to their MPI libraries.   

The next step is to run the parallel program:   

>> smsRun -np 1 basic_ex1_sms

The smsRun command shown above runs program basic_ex1_sms on 1 process.  The 
output written to the screen will look something like this:   

SMS:: Program started: 1999:12:02::15:55:22
SMS: BITWISE EXACT reductions will NOT be used.
HELLO

SMS:: Program complete, exiting: 1999:12:02::15:55:22 Elapsed Time = 0
sec.



9 

All output lines beginning with "SMS::" are diagnostic messages from the SMS run-time 
system.  The first and last output lines are time-stamps printed by SMS when a program 
begins and when it ends.  These time-stamps are a useful guide for measuring wall-clock 
run times.  The second text line is another message from SMS that indicates default 
behavior of reduction operations to be discussed in Section 7.2.  Henceforth, diagnostic 
messages from SMS will usually be omitted for brevity.  The remaining line contains the 
text that was output when this program was run as a serial Fortran code.   

The program can be run on 3 processes using the smsRun command like this:   

>> smsRun –np 3 basic_ex1_sms

The following text appears on the screen:   

HELLO

This looks just like the run made on one process.  Why?  By default, SMS prints only one 
message per Fortran print (or write) statement to mimic the behavior of the original serial 
code as closely as possible.  SMS also provides other "parallel print" modes, as described 
in Section 2.3.2 and in detail in Section 12.2.   

By default, the smsRun command creates some files in the /tmp directory.  On some 
machines, this directory is not visible to all nodes participating in the parallel run.  In 
these cases, the location of the temporary directory must be overridden by specifying the 
SMS_TEMPDIR environment variable.  For example: 

setenv SMS_TEMPDIR $HOME/tmp

2.3 Simple Computation on a Regular Grid 

Example 2-1 illustrates a very simple code that initializes an array, performs a simple 
computation, and prints results on the screen.  It consists of two parts:  include file 
basic.inc and source file basic_ex2.f.  

[Include file: basic.inc]

integer im, jm
common /sizes_com/ im, jm

[Source file: basic_ex2.f]

program basic_ex2
include 'basic.inc'
im = 10
jm = 10
call compute
end

subroutine compute
include 'basic.inc'
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integer i, j, xsum
integer x(im,jm)
do 100 j=1,jm
do 100 i=1,im

x(i,j) = 1
100 continue

xsum = 0
do 200 j=1,jm
do 200 i=1,im

xsum = xsum + x(i,j)
200 continue

print *,'xsum = ',xsum
return
end

Example 2-1: A simple serial code to initialize an array and print a global sum. 

This program initializes array x, sums the elements of x, and prints the result on the 
screen as shown below:   

>> basic_ex2
xsum = 100

Notice that this program uses automatic (dynamically allocated) arrays instead of 
traditional Fortran77 static array declarations.  The SMS directives support both dynamic 
and static memory allocation schemes.  Examples with dynamic memory allocation are 
shown first because they are slightly simpler.  Static allocation examples appear in 
Section 3.3. 

2.3.1 Parallelization by Domain Decomposition 

Programs such as this one that involve computations on regular grids are often best 
parallelized using the method of domain decomposition.  Arrays and the computations 
performed on them are "decomposed" (divided up) among the processes as evenly as 
possible.  For example, Figure 2-1, Figure 2-2, and Figure 2-3 show how array x might 
be decomposed in the i dimension over one, two and three processes.   

Note that the sub-domains of array x become smaller as the number of processes 
increases.  These sub-domains are referred to as "local" arrays because they cannot be 
accessed by other processes on a distributed memory machine.  In SMS terms, the 
original array x in the serial code is sometimes referred to as a "global array".  Indices 
used to access a global array are called "global indices" while indices used to access a 
local array are called "local indices".  Similarly, sizes of the dimensions of a global array 
are called "global sizes" and sizes of the dimensions of a local array are called "local 
sizes".   For dynamic memory code, the local and global indices are identical.  We will 
see in Section 3.3 that the global and local indices differ from each other for static 
memory codes.   
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Figure 2-1:  A graphical representation of a non-decomposed 10 by 10 integer array. 
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Figure 2-2:  An illustration of a  10 by 10 array decomposed over two processes.  These integer 
arrays are now local arrays declared by each process.  When dynamic memory is used, global 
addressing is used to access local array elements.  Thus, on process P2, the first dimension ranges 
from 6 to 10.   
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Figure 2-3:  A 10 by 10 array decomposed over three processes.  In this example, the locally declared 
size of process P2 is larger than the sizes of P1 or P3. 

In this program, domain decomposition of array x requires three basic steps.  First, the 
way in which x will be decomposed must be described.  For this simple example, we 
choose to decompose only in the i dimension (decompositions of two dimensions are 
discussed in Section 3.2).  Second, the declarations of array x should be modified to 
reflect smaller local sizes.  Finally, the start and stop indices of each relevant loop must 
be changed to reflect the smaller range of local indices.  These three steps are 
accomplished using four SMS directives.  The DECLARE_DECOMP and 
CREATE_DECOMP directives are used to describe a decomposition.  Array declarations 
are modified using the DISTRIBUTE directive while loop start and stop indices are 
changed using the PARALLEL directive.  These directives have been inserted into the 
serial program as shown in Example 2-2:   

[Include file: basic.inc]
1 integer im, jm
2 common /sizes_com/ im, jm
3 CSMS$DECLARE_DECOMP(DECOMP_I, 1)

[Source file: basic_ex2.f]

1 program basic_ex2
2 include 'basic.inc'
3 im = 10
4 jm = 10
5 CSMS$CREATE_DECOMP(DECOMP_I, <im>, <0>)
6 call compute
7 end
8
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9 subroutine compute
10 include 'basic.inc'
11 integer i, j, xsum
12 CSMS$DISTRIBUTE(DECOMP_I, 1) BEGIN
13 integer x(im,jm)
14 CSMS$DISTRIBUTE END
15 CSMS$PARALLEL(DECOMP_I,<i>) BEGIN
16 do 100 j=1,jm
17 do 100 i=1,im
18 x(i,j) = 1
19 100 continue
20 xsum = 0
21 do 200 j=1,jm
22 do 200 i=1,im
23 xsum = xsum + x(i,j)
24 200 continue
25 CSMS$PARALLEL END
26 print *,'xsum = ',xsum
27 return
28 end

Example 2-2:  A simple serial code with comment-based SMS directives added.   

Notice that each of the SMS directives begins with five characters "CSMS$" which 
makes it a Fortran comment.  This is true for all SMS directives. Also, note that both the 
DISTRIBUTE and PARALLEL directives come as BEGIN-END pairs.  When an SMS 
directive appears in this form, its scope consists of all lines of code between the "BEGIN" 
and "END" directives.  Some SMS directives, such as TRANSFER (Section 6) and 
REDUCE (Section 7) may be used either alone or as a BEGIN-END pair.  The text 
translation effects of a BEGIN-END directive pair do not extend into called subroutines.   

The first directive, DECLARE_DECOMP, is used to give a name to the SMS 
decomposition that will be used to divide among the processes the work done in loops 
100 and 200.  Its first argument, DECOMP_I, is the user-chosen name for the 
decomposition.  Any valid Fortran variable name (up to 20 characters long) may be used 
to name a decomposition provided it does not conflict with any variable in the serial 
code.  The second argument, 1, is an integer that indicates how many dimensions are 
decomposed.  This argument is omitted if static memory allocation is used (see Section 
3.3) or if the decomposed arrays have non-unit lower bounds (see Section 3.6).   

Next, the CREATE_DECOMP directive is used to describe what kind of decomposition 
DECOMP_I will be.  The first argument is the decomposition name DECOMP_I specified 
in the DECLARE_DECOMP directive.  The second argument, <im>, describes the 
decomposition as a 1-dimensional decomposition where the number of data points is the 
global size of the original serial dimension.  The last argument, <0>, indicates that this 
decomposition will have no halo regions (halo thickness = 0).  Halo regions are 
introduced later in this section and are described in detail in Section 5.1.  

The third directive, DISTRIBUTE, associates array x with the decomposition 
DECOMP_I.  The second argument is used to indicate how array dimension(s) 
correspond to the dimensions of the decomposition named DECOMP_I.  In this simple 
one-dimensional decomposition, 1 indicates that the first dimension of the array x will be 
decomposed as described by the single dimension of the SMS decomposition named 
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DECOMP_I.  The distinction between "dimension of an array" and "dimension of an 
SMS decomposition" will become more clear in the two-dimensional decomposition 
examples shown later in Section 3.2.   

The DISTRIBUTE directive does two things.  First, it identifies array declarations that 
will be translated to use local sizes.  In the above example program, the DISTRIBUTE 
directive will cause the declaration of x to be translated to a local declarations such as 
one of those shown in Figure 2-1, Figure 2-2, or Figure 2-3 (depending on the number of 
processes).  The second task of DISTRIBUTE is to provide information about how each 
array is decomposed to other SMS directives and to support automatic parallelization of 
some operations (such as unformatted I/O).  These features are described in detail in later 
sections.   

Finally, the PARALLEL directive identifies loops that must be modified to span the 
smaller local arrays during translation.  The second argument, <i>, indicates that loops 
with loop index i should be translated to span the decomposed dimension of array x.  For 
example, if the program in Example 2-2 is run on two processes then i loops 100 and 
200 will span local indices 1 through 5 on each process.   

Building the SMS parallel code is a bit more complicated than the previous example due 
to the presence of the include file that contains a directive.  Two commands are now 
needed.  The first translates the include file:   

>> ppp --header basic.inc

The "--header" option to the PPP command indicates that the file is an include file and 
must be translated differently than a standard Fortran source file.  In the command above, 
include file basic.inc will be translated into new SMS include file 
basic.inc.SMS.  The second command requires PPP option "--Finclude" to translate 
the Fortran source file:   

>> ppp --Finclude=basic.inc basic_ex2.f

The "--Finclude" option to the PPP command indicates that file basic.inc is an 
include file that has been translated by PPP.  During translation of source file 
basic_ex2.f, inclusions of this file will be translated from  

include 'basic.inc'
to 

include 'basic.inc.SMS'

to ensure that the translated include file is used.   

Running this program on one process produces the expected result.   

>> smsRun –np 1 basic_ex2_sms
xsum = 100



15 

However, when this program is run on two and three processes, the values of xsum
differ from the serial run.  

>> smsRun –np 2 basic_ex2_sms
xsum = 50

>> smsRun –np 3 basic_ex2_sms
xsum = 30

Why did the parallel program produce incorrect results?  The answer lies in the 
computations made in loop 200.  In this loop, all of the elements of array x are summed 
and the result is placed in variable xsum.  However, when the program is run on two or 
three processes, each process sums only its own local sub-domain of x as illustrated in 
Figure 2-4, and Figure 2-5.  To reproduce the result of the original serial code, we will 
need the REDUCE (see Section 2.3.3) directive.   
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Figure 2-4:  Each process sums its local portion of the array x.   
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Figure 2-5:  In this example, local sums are produced on each of the three processes.   

2.3.2 Parallel Printing 

In SMS, by default, only one process will print a message when a print statement is 
encountered.  Therefore, the value of xsum printed is the value of xsum computed 
locally only on the printing process.  We can see the value of xsum on every process by 
changing the default print behavior with the PRINT_MODE directive.  The print 
statement on line 26 of the program in Example 2-2 would be modified as shown below:   

CSMS$PRINT_MODE(ASYNC) BEGIN
print *,'xsum = ',xsum

CSMS$PRINT_MODE END

This PRINT_MODE directive changes the print mode from the default mode to 
"asynchronous" mode.  When a print statement is encountered in asynchronous print 
mode, each process will print a message to the screen.  When run on two processes, the 
following results are printed:   

>> smsRun –np 2 basic_ex2_sms
xsum = 50
xsum = 50

Clearly, each process has computed the correct sum for its local half of array x.  When 
run on three processes we may see any of the following results:   
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>> smsRun –np 3 basic_ex2_sms
xsum = 40
xsum = 30
xsum = 30

>> smsRun –np 3 basic_ex2_sms
xsum = 30
xsum = 40
xsum = 30

>> smsRun –np 3 basic_ex2_sms
xsum = 30
xsum = 30
xsum = 40

In the asynchronous print mode, the messages printed by each process may come out in 
any order.  Another parallel print mode supported by SMS is the "ORDERED" print 
mode which preserves process order.  Section 12.2 describes the SMS print modes in 
more detail.   

2.3.3 Reduction 

We have seen that each process has computed the correct sum for its local sub-domain of 
array x.  To reproduce the same result as the original serial code, the local sums must be 
added together as shown in Figure 2-6.  In more general terms, the computed value of 
xsum depends on all of the values of array x.  This is known as a "global dependence" 
because the result of the computation depends on every element of global array x. 

 

xsum = 30

P1 P2 P3 
xsum = 30 xsum = 40

xsum = 100

P1 P2 P3 

xsum = 100 xsum = 100 xsum = 100

 
Figure 2-6:  In this example, the reduction gathers the local sums, computes a global sum and then 
broadcasts the result out to the processes. 
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The REDUCE directive is used to resolve this dependence.  To compute a global sum, 
insert the following line immediately before the print statement on line 26 of Example 
2-2:   

CSMS$REDUCE(xsum,SUM)

The REDUCE directive performs communications necessary to reduce the local values of 
a variable on each process to a single value that is identical on all processes.  A specified 
operator is used to combine the values from each process.  The first argument indicates 
that xsum is the name of the variable to be reduced.  The second argument, SUM, 
specifies that the local values of xsum will be summed during reduction.  Reductions are 
described in more detail in Section 7.  The parallel program now produces the expected 
results when run on various numbers of processes (assuming the PRINT_MODE 
directives used in Section 2.3.2 are removed):   

>> smsRun –np 2 basic_ex2_sms
xsum = 100

>> smsRun –np 3 basic_ex2_sms
xsum = 100

2.4 Boundary Initialization 

In Example 2-2, all elements of array x were initialized to the same value.  Usually, it is 
desirable to initialize array elements differently depending on their location.  This occurs 
often in models where elements near the model boundaries may be treated differently 
than other array elements.  Example 2-3 below shows a variant of subroutine compute
from Example 2-2 (changes are highlighted) that sets elements on the array boundaries 
where i=1 or i=im to 2 and all other elements to 1. This is illustrated in Figure 2-7.   
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Figure 2-7:  An illustration of a boundary initialization where edge point values are different than 
interior points.   

 

1 subroutine compute
2 include 'basic.inc'
3 integer i, j, xsum
4 CSMS$DISTRIBUTE(DECOMP_I, 1) BEGIN
5 integer x(im,jm)
6 CSMS$DISTRIBUTE END
7 CSMS$PARALLEL(DECOMP_I,<i>) BEGIN
8 do 100 j=1,jm
9 do 100 i=1,im

10 x(i,j) = 1
11 100 continue
12 do 110 j=1,jm
13 x( 1,j) = 2
14 x(im,j) = 2
15 110 continue
16 xsum = 0
17 do 200 j=1,jm
18 do 200 i=1,im
19 xsum = xsum + x(i,j)
20 200 continue
21 CSMS$PARALLEL END
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22 CSMS$REDUCE(xsum,SUM)
23 print *,'xsum = ',xsum
24 return
25 end

Example 2-3:  Boundary initialization requires special handling. 

When the serial version of Example 2-3 is run, the following results are printed on the 
screen:   

>> basic_ex3
xsum = 120

However, when the parallel code is run on more than one process, results are 
unpredictable:   

>> smsRun –np 2 basic_ex3_sms
<core dump>

The reason for these erroneous results can be seen by examining new loop 110 in detail.  
Line 14 in loop 110 contains the following statement:   

x(im,j) = 2

This statement will perform the following assignments:   

x(10, 1) = 2
x(10, 2) = 2

...
x(10,10) = 2

On process 1 of a 2 process run, array x is dimensioned x(1:5,1:10) (see Figure 2-2) 
so x(10,10) is out of bounds.  The behavior of any program that performs such 
assignments is unpredictable.  Similarly, line 13 causes an out-of-bounds assignment on 
process 2.   

To address this problem, the assignment statements must be modified so they are only 
executed on the processes that contain the specified global indices in their local sub-
domains.  The GLOBAL_INDEX directive solves these problems as shown below:   

do 110 j=1,jm
CSMS$GLOBAL_INDEX(1) BEGIN

x( 1,j) = 2
x(im,j) = 2

CSMS$GLOBAL_INDEX END
110 continue

The GLOBAL_INDEX directive ensures the enclosed statements are only executed on 
the appropriate processes. Now only process 1 will execute line 13 and only process 2 
will execute line 14.  The argument in the GLOBAL_INDEX directive, 1, indicates that 
these translations will be applied to array indices that correspond to the first (and in this 
case only) decomposed dimension.  In this case, the decomposed dimension corresponds 
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to the i dimension of array x.  (The concept of "decomposed dimension" is explained in 
detail in Section 3.)  The effects of the GLOBAL_INDEX directives on the assignments 
of x(1,j) and x(im,j) are shown for the two process case in Figure 2-8.   
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Figure 2-8:  GLOBAL_INDEX is used to initialize the boundaries of the array x. 

Now when the parallel code is run, results match the serial code:   

>> smsRun –np 2 basic_ex3_sms
xsum = 120

>> smsRun –np 3 basic_ex3_sms
xsum = 120

2.5 A Simple Explicit FDA Program 

The following example is an explicit FDA program that solves Laplace's equation on a 
two-dimensional surface with fixed boundaries using Jacobi relaxation.  On a two-
dimensional surface, Laplace's equation takes the form:   

x
f

2

2

∂
∂  + 

y
f

2

2

∂
∂  =   0         

A simple approach is to discretize the two-dimensional space and use and explicit finite 
difference approximation to the derivatives to seek a numerical solution.  The discrete 
equation is:   

  4*f(i,j) - f(i-1,j) - f(i+1,j) - f(i,j-1) - f(i,j+1) = 0 
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The initial state is f on the boundaries.  The boundaries are constant and non-periodic.  
The above equation is solved for f(i,j) iteratively until it converges.  The solution is said 
to converge when the difference between successive solutions is less than a specified 
threshold.  The difference between values of f(i,j) in two successive iterations is the 
following:   

  df(i,j) = (1/4) * (f(i-1,j) + f(i+1,j) + f(i,j-1) + f(i,j+1)) - f(i,j) 

Using the method of Jacobi relaxation, the value of f(i,j) during an iteration is calculated 
from the value of f(i,j) computed in the previous iteration as follows:   

  fnew(i,j) = fold(i,j) + df(i,j) 

In Example 2-4 below, boundary elements of array f are initially set to 2.0 (lines 25-31).  
Laplace's equation is then solved and diagnostic messages are printed on the screen. 
Previously described SMS directives have already been inserted.   

[Source file: laplace.f]
1 program laplace
2 include 'basic.inc'
3 im = 10
4 jm = 10
5 CSMS$CREATE_DECOMP(DECOMP_I, <im>, <0>)
6 call laplace
7 end
8
9 subroutine laplace

10 include 'basic.inc'
11 integer i, j, iter
12 real max_error
13 real tolerance
14 parameter (tolerance = 0.001)
15 CSMS$DISTRIBUTE(DECOMP_I, 1) BEGIN
16 real f(im,jm), df(im,jm)
17 CSMS$DISTRIBUTE END
18 CSMS$PARALLEL(DECOMP_I,<i>) BEGIN
19 do 100 j=1,jm
20 do 100 i=1,im
21 f(i,j) = 0.0
22 100 continue
23 do 110 j=1,jm
24 CSMS$GLOBAL_INDEX(1) BEGIN
25 f( 1,j) = 2.0
26 f(im,j) = 2.0
27 CSMS$GLOBAL_INDEX END
28 110 continue
29 do 120 i=1,im
30 f(i, 1) = 2.0
31 f(i,jm) = 2.0
32 120 continue
33 iter = 0
34 max_error = 2.0 * tolerance
35 C main iteration loop...
36 do while ((max_error .gt. tolerance) .and. (iter .lt. 1000))
37 iter = iter + 1
38 max_error = 0.0
39 do 200 j=2,jm-1
40 do 200 i=2,im-1
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41 df(i,j) = 0.25*(f(i-1,j) + f(i+1,j) + f(i,j-1) + f(i,j+1))
42 & - f(i,j)
43 200 continue
44 do 300 j=2,jm-1
45 do 300 i=2,im-1
46 if (max_error .lt. abs(df(i,j))) then
47 max_error = abs(df(i,j))
48 endif
49 300 continue
50 CSMS$REDUCE(max_error, MAX)
51 do 400 j=2,jm-1
52 do 400 i=2,im-1
53 f(i,j) = f(i,j) + df(i,j)
54 400 continue
55 enddo
56 CSMS$PARALLEL END
57 print *, 'Solution required ',iter,' iterations'
58 print *, 'Final error = ', max_error
59
60 return
61 end

Example 2-4:  Serial code plus directives illustrate a parallel solution to Laplace’s equation.  This 
solution, using a one-dimensional decomposition, produces incorrect results. 

Notice that the REDUCE directive generates the global maximum error from the local 
maxima on each process.   

When the serial program is run, the following messages are printed on the screen:   

>> laplace
Solution required 85 iterations
Final error = 9.9968910E-4

When the parallel program is run on more than one process, results are incorrect:   

>> smsRun –np 2 laplace_sms
Solution required 45 iterations
Final error = 9.9253654E-4

>> smsRun –np 3 laplace_sms
Solution required 131 iterations
Final error = 9.9420547E-4

Why do results change for different numbers of processes?  The answer lies in the 
computations made on lines 41 and 42:   

df(i,j) = 0.25*(f(i-1,j) + f(i+1,j) + f(i,j-1) + f(i,j+1)) - f(i,j)

Here, each df(i,j) is computed from f(i-1,j), f(i+1,j), f(i,j-1), 
f(i,j+1), and f(i,j).  This type of dependence is called an "adjacent dependence" 
because the computation at point (i,j) depends on data at adjacent (or "nearby") 
points.  Adjacent dependencies are often represented graphically using a “stencil” as 
shown in Figure 2-9.   
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Figure 2-9:  This five-point stencil illustrates the dependencies of the array y on the computation of 
x.   

In Figure 2-10 stencils have been overlaid on graphical representations of the sub-
domains assigned to each process during a run made on three processes.  The stencil 
centered at point (2,2) on process P1 illustrates that computations at this grid point 
require values from points (2,2), (2,1), (1,2), (2,3), and (3,2).  These array 
elements are all inside the local sub-domain of process P1.  Similarly, computations at 
point (5,8) depend only on array elements inside the local sub-domain of process P2.  
However, computations on sub-domain boundaries cannot be performed so easily.  For 
example, the stencil centered at point (7,5) on process P2 depends on the element at 
point (8,5) which is located in the local sub-domain of process P3.  Similarly, the 
stencil centered at point (8,2) on process P3 requires an element from process P2.  The 
results of the parallel program above are incorrect because no data is sent between 
processes to resolve the adjacent dependence in loop 200.   

It is possible to solve this problem by sending single data points between processes.  
However, on high-latency machines, sending messages that contain only one array 
element is very inefficient compared to sending messages that contain many array 
elements.  The most common approach to handle adjacent dependencies is to create 
"halo" or “ghost” regions to store these data as shown in Figure 2-11.  Each halo point 
corresponds to an interior point of a neighboring process.  For example, in Figure 2-11, 
halo point (8,5) in process P2 corresponds to interior point (8,5) in process P3. When data 
in these regions are needed, the halo regions are updated by swapping columns (or larger 
blocks) of data between processes as shown in Figure 2-12.  This form of inter-process 
communication is called "exchange" and is supported by the EXCHANGE directive.   



25 

 

Out-of-bounds
access 

i 

j 

6 751 3 42 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

8 9 10 

PROCESS: P1 P2 P3

 
Figure 2-10:  Illustration of how an adjacent dependence causes out-of-bounds data references on 
processes P2 and P3.   
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Figure 2-11:  Halo regions eliminate the out-of-bounds array references.  Notice the distinction 
between interior points (in white) and halo points (in gray).  The local indices of the halo points on 
the domain edges actually lie outside the serial domain range (1 to 10).  These edge halo points are 
only used for problems that have periodic boundary conditions as described in Section 9. 
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Figure 2-12:  Halo regions are updated by exchanging data between adjacent processes.   

The laplace program in Example 2-4 can be corrected by modifying line 5 to specify one 
halo point  

CSMS$CREATE_DECOMP(DECOMP_I, <im>, <1>)

and by adding the following directive before line 39:   

CSMS$EXCHANGE(f)

The third argument of the CREATE_DECOMP directive has been changed to <1>.  This 
indicates that all arrays decomposed using DECOMP_I will have a halo region one point 
thick added in the first decomposed dimension (the i dimension in this case).  The only 
argument of the EXCHANGE directive is the name of the variable (f) to be exchanged.  
The directive is placed immediately before loop 200 to ensure that halo regions of f are 
updated prior to the computations that need them.  The EXCHANGE directive is 
described in more detail in section 5.1.   

Now the parallel program produces the correct results on more than one process:   

>> smsRun –np 2 laplace_sms
Solution required 85 iterations
Final error = 9.9968910E-4

>> smsRun –np 3 laplace_sms
Solution required 85 iterations
Final error = 9.9968910E-4
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2.6 Writing Output to Disk 

The Laplace solver in Example 2-4 would be more useful if the final state of array f 
could be written to disk.  This is easily done by adding the following code fragment 
immediately before the return statement (line 60) in subroutine laplace:   

open(10, file='f.out', form='unformatted')
write(10) f
close(10)

When the serial program is run, file f.out is written.  For the SMS parallel program, no 
additional directives are required to handle this output.  By default, SMS  automatically 
generates f.out in exactly the same format as the serial program, for any number of 
processes.  However, SMS can also produce other file formats as discussed in Section 
12.1.   

2.7 Using Multiple Decompositions 

So far, we have seen how to parallelize a program that only requires a single domain 
decomposition.  However, many programs require the use of different decompositions at 
different times to run efficiently in parallel.  The TRANSFER directive provides the 
means to transform arrays between decompositions.  Spectral models are prime 
candidates for application of TRANSFER (see Section 6.2).   

In this section, we present a simple case where two different decompositions are needed.  
In Example 2-5, the statement at line 42 contains a dependence called a "recurrence 
relation".  In this statement, an update to x(i,j) depends on x(i,j-1) which was 
updated in the previous loop iteration.  SMS does not provide directives that directly 
support parallelization of a recurrence relation if the array dimension is decomposed.  
Since the second (j) dimension of x is decomposed, SMS cannot handle this statement.  
Similarly, the statement at line 63 prevents decomposition in i.  One solution, shown in 
Example 2-5, is to decompose x in i and y in j.   

[transfer.inc]
1 integer im, jm
2 common /sizes_com/ im, jm
3
4 CSMS$DECLARE_DECOMP(DECOMP_I, 1)
5 CSMS$DECLARE_DECOMP(DECOMP_J, 1)
6

[transfer.f]
1 program TRANSFER1
2 implicit none
3
4 include 'transfer.inc'
5
6 integer i
7 integer j
8
9 im = 60

10 jm = 90
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11
12 CSMS$CREATE_DECOMP(DECOMP_I, <im>, <0>)
13 CSMS$CREATE_DECOMP(DECOMP_J, <jm>, <0>)
14
15 call DO_IT
16
17 end
18
19
20
21 subroutine DO_IT
22 include 'transfer.inc'
23
24 CSMS$DISTRIBUTE(DECOMP_I, 1) BEGIN
25 real x(im,jm)
26 CSMS$DISTRIBUTE END
27
28 CSMS$DISTRIBUTE(DECOMP_J, 2) BEGIN
29 real y(im,jm)
30 CSMS$DISTRIBUTE END
31
32 C BEGIN
33
34 x = 1.0
35
36 CSMS$PARALLEL(DECOMP_I, <i>) BEGIN
37
38 C dependence in the j dimension that
39 C SMS does not provide directives to parallelize
40 do j = 2, jm
41 do i = 1, im
42 x(i,j) = x(i,j) + x(i,j-1)
43 end do
44 end do
45 CSMS$PARALLEL END
46
47 CSMS$TRANSFER(<X, Y>) BEGIN
48 do j = 1, jm
49 do i = 1,im
50 y(i,j) = x(i,j)
51 end do
52 end do
53 CSMS$TRANSFER END
54
55
56
57 CSMS$PARALLEL(DECOMP_J, <j>) BEGIN
58
59 C dependence in the i dimension that
60 C SMS does not provide directives to parallelize
61 do j = 1, jm
62 do i = 2, im
63 y(i,j) = y(i,j) + y(i-1,j)
64 end do
65 end do
66 CSMS$PARALLEL END
67
68 open(10,file='f1',form='unformatted')
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69 write(10) y
70 close(10)
71
72 return
73 end

Example 2-5:  A simple SMS parallel program that requires two data decompositions due to 
recurrence relations in i for array x and j for array y.   

Example 2-5 contains two DECLARE_DECOMP and CREATE_DECOMP directives.  
The DISTRIBUTE directive at line 24 uses DECOMP_I to decompose x in i.  The 
DISTRIBUTE directive at line 28 uses DECOMP_J to decompose y in j.  The 
TRANSFER directive at line 47 causes SMS to replace the serial code between the 
BEGIN and END TRANSFER directives (a simple copy) with communication that re-
distributes (transposes) the data among the processes as illustrated in Figure 2-13.  x is 
referred to as the source array of the TRANSFER directive and y is referred to as the 
destination array.   

 
Process 

Transpose

P1 P2

x y 

 
Figure 2-13:  An illustration of the data movement required between processes P1 and P2 for a 
transposition operation.   
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3 Decomposing Arrays and Parallelizing Loops 

3.1 Choosing Decompositions 

In order to choose domain decompositions that will yield optimal performance, the 
dependencies of arrays on one another must be analyzed.  Usually, several decomposition 
options are possible.  Decompositions of 3D arrays supported by SMS are shown in 
Figure 3-1.  Dependence analysis is used to help pick optimal decompositions that will 
minimize inter-process communication.  Typical explicit FDA models will be optimally 
decomposed in one or both of the horizontal dimensions as illustrated by "a", "b", or "d" 
of Figure 3-1.  All of these decompositions may be used by spectral models which are 
described in Section 6.2.   
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(e)

 

(c)

 

(f)  
Figure 3-1:  Decompositions of three-dimensional arrays supported by SMS.   

Other issues to consider when selecting decompositions are the architecture of the 
machine on which the program will most likely be run and how many processes will be 
available.  For vector machines, it is best to leave the inner dimension non-decomposed 
when possible to maximize vector lengths.  On cache-based machines, it may be best to 
decompose the inner dimension instead.  For example, in Figure 3-1, decomposition "a" 
would preserve long vector lengths while decomposition "b" would not.  In addition, 
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when the number of processes available is larger than the number of grid points in the 
single decomposed dimension, two dimensions should  be decomposed.   

3.2 Two-Dimensional Decompositions 

The full power of the DECLARE_DECOMP, CREATE_DECOMP, DISTRIBUTE, and 
PARALLEL directives becomes more apparent when two dimensions are decomposed.  
Consider the following example:   

[Include file: decomp_ex1.inc]

1 integer im, jm, km
2 common /sizes_com/ im, jm, km
3 CSMS$DECLARE_DECOMP(DECOMP_IJ, 2)

[Source file: decomp_ex1.f]

1 program decomp_ex1
2 include 'decomp_ex1.inc'
3 im = 15
4 jm = 10
5 km = 2
6 CSMS$CREATE_DECOMP(DECOMP_IJ, <im, jm>, <0,0>)
7 call compute
8 end
9

10 subroutine compute
11 include 'decomp_ex1.inc'
12 integer i, j, k
13 CSMS$DISTRIBUTE(DECOMP_IJ, 1, 2) BEGIN
14 integer z(im,jm,km)
15 CSMS$DISTRIBUTE END
16 integer zsum
17 CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN
18 do 100 k=1,km
19 do 100 j=1,jm
20 do 100 i=1,im
21 z(i,j,k) = 1
22 100 continue
23 zsum = 0
24 do 200 k=1,km
25 do 200 j=1,jm
26 do 200 i=1,im
27 zsum = zsum + z(i,j,k)
28 200 continue
29 CSMS$PARALLEL END
30 CSMS$REDUCE(zsum, SUM)
31 print *,'zsum = ',zsum
32 return
33 end

Example 3-1:  An SMS program that uses a two dimensional decomposition.   

When run, the serial version of this program prints the following:   

>> decomp_ex1
zsum = 300
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Directives CREATE_DECOMP, DISTRIBUTE, and PARALLEL now have more 
complex arguments than in the simple examples from Section 2.3.  The second argument 
to CREATE_DECOMP, <im, jm>, indicates that the decomposition named 
DECOMP_IJ has two decomposed dimensions and that the global size of the first 
decomposed dimension is im and the global size of the second decomposed dimension is 
jm.  The third argument, <0,0>, indicates that DECOMP_IJ has no halo regions in 
either decomposed dimension.   

The second argument to DISTRIBUTE, 1, indicates that the first dimension of array z is 
decomposed as described by the first decomposed dimension of DECOMP_IJ.  The third 
argument, 2, indicates the second dimension of array z is decomposed as described by 
the second decomposed dimension of DECOMP_IJ.  The third dimension of array z will 
not be decomposed.  This is decomposition "d" in Figure 3-1.  More details about 
DISTRIBUTE can be found in Section 3.4.1.   

The second argument to PARALLEL, <i>, is used to identify loop indices for loops 
spanning the first decomposed dimension of DECOMP_IJ.  Similarly, the third argument, 
<j>, is used to identify loop indices for loops spanning the second decomposed 
dimension of DECOMP_IJ.  The PARALLEL directive will translate both i and j 
dimensions of loops 100 and 200 to local loop bounds.   

When this code is run on 2 or 3 processes, we see the expected results:   

>> smsRun –np 2 decomp_ex1_sms
SMS: Using default process layout (2 x 1) for decomposition decomp_ij
zsum = 300

>> smsRun –np 3 decomp_ex1_sms
SMS: Using default process layout (3 x 1) for decomposition decomp_ij
zsum = 300

Note that SMS prints an additional diagnostic message for two-dimensional 
decompositions.  This message describes how many processes are assigned to each 
decomposed dimension, which can be useful for debugging or performance analysis.  For 
brevity, this message will not be shown again.   

3.3 Using Statically Allocated Memory 

When dynamic memory allocation is used, SMS automatically sets local array sizes at 
run-time.  However, static memory codes require the local array sizes to be declared by 
the programmer.  In addition, the local and global indices differ (Figure 3-2 below), often 
necessitating conversions between the two (see Section 4).   

Example 3-2 illustrates a program using static memory allocation.  In this example, the 
DECLARE_DECOMP directive requires a new second argument, <(im/2)+1,
jm/2>.  This informs SMS that the decomposition named DECOMP_IJ has two 
decomposed dimensions and specifies declared local sizes for each.  The declared sizes 
will be used to translate declarations of static arrays enclosed by DISTRIBUTE 
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directives.  For instance, z will have a size of (im/2 +1, jm/2, km) in the 
translated version of the code in Example 3-2.   

[Include file: decomp_ex4.inc]

1 integer im, jm, km
2 parameter (im = 15, jm = 10, km = 2)
3 CSMS$DECLARE_DECOMP(DECOMP_IJ, <(im/2)+1, jm/2>)

[Source file: decomp_ex4.f]

4 program decomp_ex4
5 include 'decomp_ex4.inc'
6 CSMS$DISTRIBUTE(DECOMP_IJ, 1, 2) BEGIN
7 integer z(im,jm,km)
8 CSMS$DISTRIBUTE END
9 integer zsum, i, j, k

10 CSMS$CREATE_DECOMP(DECOMP_IJ, <im, jm>, <0,0>)
11 CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN
12 do 100 k=1,km
13 do 100 j=1,jm
14 do 100 i=1,im
15 z(i,j,k) = 1
16 100 continue
17 zsum = 0
18 do 200 k=1,km
19 do 200 j=1,jm
20 do 200 i=1,im
21 zsum = zsum + z(i,j,k)
22 200 continue
23 CSMS$PARALLEL END
24 CSMS$REDUCE(zsum, SUM)
25 print *,'zsum = ',zsum
26 end

Example 3-2:  An SMS program that uses static memory allocation requires the local sizes be 
declared in the DECLARE_DECOMP directive.  In this example, these local sizes are:  (im/2)+1 
and jm/2.   

In static memory cases, where the number of processes assigned to a decomposed 
dimension does not evenly divide the global size of that dimension, the declared local 
sizes specified in the DECLARE_DECOMP directive must be set for the process(es) that 
use(s) the most memory.  For a 4-process run, the term (im/2)+1 (Example 3-2, line 3) 
ensures there will be sufficient local memory for all processes even though two require 
local arrays of size (8,5,2) while the other two require arrays of size (7,5,2).  
Figure 3-2 illustrates this point.   



34 

 

i 

j 
PROCESS: 

real z(8,5)

P1, P3

real z(8,5)

P2, P4 

6 7 81 3 4 52 

6 7 81 3 4 52 

3 76 5 4 1 2

11 1514 13 12 9 10

X

X

UNUSED ARRAY 
ELEMENTS 

“Local” indices: 

“Global” indices: 

1 
2 

3 
4 
5 

1 
2 

3 
4 
5 

10 

1 
2 

3 
4 
5 

6 
7 

8 
9 

 
Figure 3-2:  For static memory allocation, the size of the decomposed arrays is set in the 
DECLARE_DECOMP directive based on the number of processes that will be used to run the 
program.  Sometimes all the memory declared will not be used as illustrated for processes P2 and P4.  
Processes P2, P3, and P4 have local indices that are different from the corresponding global indices 
of array z.  (Non-decomposed dimension “k” is not shown.)   

A run on 4 processes yields the correct results. A run made on 8 processes also works.  
Why?  In this case, SMS assigns processes as shown in Figure 3-3.  The largest local 
array sizes required on any process for the eight-process run are(4,5,2).  So the declared 
local array sizes are big enough to hold the translated arrays and the program runs as 
expected.  However, it wastes memory because only half of each declared array is ever 
used (1:4,*,*).   

In addition to wasting memory, performance of the 8-process run might not be optimal on 
a cache-based machine because the data used in each array are scattered over a block of 
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memory twice the needed size.  This will likely result in more cache misses and may 
significantly degrade performance.  Further, this effect becomes more severe as the 
number of processes increases.  For example, if the program were run on 32 processes, 
the largest local array sizes required on any process would be only (2,3,2).  Therefore, 
it is especially important to declare arrays using the smallest possible sizes for large 
numbers of processes.   
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Figure 3-3:  Memory layout for 8-process run.   

Running Example 3-2 on 2 processes produces the following:   

>> smsRun –np 2 decomp_ex4_sms
Process: 1 Error at: ./decomp_ex4_sms.f:10.1
Process: 1 Error status= -2202 : USER DECLARED STATIC ARRAY IS TOO

SMALL.
Process: 1 Aborting...

What happened?  By default, the two processes are distributed along the i dimension so 
the largest local array sizes required on any process for the two-process run is 
(8,10,2).  However, the DECLARE_DECOMP directive set local array sizes to 
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((im/2)+1,jm/2,km) = (8,5,2) which is too small for the two process run (see 
Figure 3-2).  SMS detects this error at run time, prints the error messages, and aborts the 
program.   

To provide sufficient memory for the local arrays in a two-process run, we can modify 
the sizes in the DECLARE_DECOMP directive as follows:   

CSMS$DECLARE_DECOMP(DECOMP_IJ, <(im/2)+1, jm>)

If the following DECLARE_DECOMP directive were used   

CSMS$DECLARE_DECOMP(DECOMP_IJ, <im, jm>)

all translated arrays would be declared full-size.  This code could then be run on any 
number of processes (provided each process has enough memory).  This is very useful 
during debugging because it allows comparison of results for runs made on different 
numbers of processes.  Once debugging is complete, the DECLARE_DECOMP 
directives should be changed to minimize memory use.   

Determining the proper local sizes for static memory models that need EXCHANGE 
directives will be discussed in Section 5.1.3.   

3.4 More about DISTRIBUTE 

3.4.1 Further Detail on DISTRIBUTE Syntax 

This section explains the distinction between “dimension of an array” and “dimension of 
an SMS decomposition”.  The DISTRIBUTE directive can decompose several types of 
arrays as shown the in the following code fragments:   

CSMS$DISTRIBUTE(DECOMP_IJ, 1, 2) BEGIN
integer x(im,jm,km)

CSMS$DISTRIBUTE END

Here, the first dimension of array x is decomposed as described by the first decomposed 
dimension of DECOMP_IJ and the second dimension of array x is decomposed as 
described by the second decomposed dimension of DECOMP_IJ.  The third dimension of 
array x is not decomposed.   

CSMS$DISTRIBUTE(DECOMP_IJ, 1, 3) BEGIN
real a(im,km,jm)

CSMS$DISTRIBUTE END

The numbers 1 and 3 refer to array dimensions.  The order in which they appear 
determines the dimensions of the decomposition to which they refer.  Here, the first 
dimension of array a is decomposed as described by the first decomposed dimension of 
DECOMP_IJ and the third dimension of array a is decomposed as described by the 
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second decomposed dimension of DECOMP_IJ.  The second dimension of array a is not 
decomposed.   

CSMS$DISTRIBUTE(DECOMP_IJ, 3, 2) BEGIN
real b(km,jm,im), avg

CSMS$DISTRIBUTE END

Here, the third dimension of array b is decomposed as described by the first decomposed 
dimension of DECOMP_IJ and the second dimension of array b is decomposed as 
described by the second decomposed dimension of DECOMP_IJ.  The first dimension of 
array b is not decomposed.  avg is not decomposed at all because it is a scalar variable.   

The user can also specify how variables are distributed by using variable name tags 
instead of dimension numbers.  For example,  

CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
real x(im, jm, km)

CSMS$DISTRIBUTE END

again indicates the first dimension of array x is decomposed as described by the first 
decomposed dimension of DECOMP_IJ and the second dimension of array x is 
decomposed as described by the second decomposed dimension of DECOMP_IJ.   

CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
real b(km, jm, im)

CSMS$DISTRIBUTE END

indicates that the third dimension of b is distributed based on the first decomposed 
dimension and the second dimension of b is distributed based on the second 
decomposed dimension.   

Using this syntax, it is possible to enclose the last two arrays inside the same distribute 
directive:   

CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
real x(im, jm, km)
real b(km, jm, im)

CSMS$DISTRIBUTE END

3.4.2 Using DISTRIBUTE to Define Decomposed Boundary Arrays 

Regional weather forecast and ocean models often require boundary condition data.  A 
code segment handling western boundary conditions might look as shown in Example 
3-3.   

1 subroutine UPDATE_BOUNDARIES(u)
2 integer, parameter :: im = 10
3 integer, parameter :: jm = 20
4 integer, parameter :: km = 30
5 csms$declare_decomp(dh, 2)
6
7 csms$distribute(dh, 1, 2) begin
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8 real u(im, jm, km)
9 csms$distribute end

10
11 csms$distribute(dh, , 1) begin
12 real ubw(jm, km)
13 csms$distribute end
14
15 open(10, file='west_bdy', form='unformatted')
16 read(10) ubw
17 close(10)
18
19 csms$parallel(dh, , <j>) begin
20 csms$global_index(1) begin
21 do k = 1, km
22 do j = 1, jm
23 u(1, j, k) = (u(1, j, k) + ubw(j,k))/2.0
24 end do
25 end do
26 csms$global_index end
27 csms$parallel end
28
29 return
30 end

Example 3-3:  Subroutine showing how boundary condition arrays can be handled in SMS. 

The DISTRIBUTE statement on line 11 defines an unusual kind of decomposed array.  
Its first dimension is decomposed according to the second dimension of decomposition 
dh but none of the array dimensions are decomposed based on the first decomposed 
dimension.  When distribution of an array does not involve all decomposed dimensions, 
the distribution is called a “slice” and the array is referred to as a “sliced array”.  Since 
the exact manner in which sliced arrays are distributed is somewhat poorly defined, care 
must be taken when using them.  Limitations of sliced arrays are described in detail in 
Section 13.  The PARALLEL directive syntax on line 19 will be discussed in Section 3.5.   

3.5 More About PARALLEL 

The PARALLEL directive will translate serial loops correctly provided the upper and 
lower loop bounds are valid global indices.  For example, the i and j loops below would 
all be correctly translated:   

CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN
do 100 k=1,km
do 200 j=3,jm-2
do 200 i=3,im-2

z(i,j,k) = x(i,j,k) + y(i,j,k)
200 continue

do 210 j=1,2
do 210 i=1,im

z(i,j,k) = 0
210 continue

do 220 j=jm-1,jm
do 220 i=1,im

z(i,j,k) = 0
220 continue
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do 230 j=1,jm
do 230 i=1,2

z(i,j,k) = 0
230 continue

do 240 j=1,jm
do 240 i=im-1,im

z(i,j,k) = 0
240 continue

100 continue
CSMS$PARALLEL END

In this code fragment, notice that the translated version of loop 210 would only be 
executed on processes that contain global indices j=1 or j=2.  The PARALLEL 
directive ensures that other processes will skip loop 210.  Similar translations will occur 
for the other loops.   

Recall the syntax seen on lines 19-22 of Example 3-3.   

CSMS$PARALLEL(dh, , <j>) BEGIN
do k = 1, km

do j = 1, jm

It indicates that no enclosed loops correspond to the first decomposed dimension but any 
loops that use index j correspond to the second decomposed dimension and should be 
translated.   

There is no run-time performance penalty for using a PARALLEL directive because 
processes are not synchronized.  Also, PARALLEL directives may enclose any valid 
Fortran executable statements.  Therefore, a program that uses only one decomposition 
will usually require no more than one BEGIN-END pair of PARALLEL directives for 
each program unit (subroutine, function, or main program).   

In tagging loop indices to be translated, some care is required.  First, indices can 
sometimes be used for non-decomposed loops as well as for loops that span decomposed 
dimensions.  This is the case in the following fragment:   

CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN
do 200 k=1,km
do 200 j=1,jm
do 200 i=1,im

z(i,j,k) = x(i,j,k) + y(i,j,k)
200 continue

do 500 i=1,3
call smooth(z)

500 continue
CSMS$PARALLEL END

In this case, loop 500 is used to repeatedly call subroutine smooth which performs some 
computations on decomposed array z.  This loop should NOT be translated because i is 
being used as an iteration count, not as an index into a decomposed dimension.  This is 
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easily fixed either by using a loop index other than i or j in loop 500 or by moving the 
PARALLEL END directive to exclude loop 500.   

Second, make sure that all loops manipulating decomposed arrays are enclosed inside 
PARALLEL directives.  During translation, PPP will issue a warning message whenever 
it finds a loop that is not enclosed by PARALLEL directives if that loop contains a 
decomposed array:   

This variable, decomposed by CSMS$DISTRIBUTE, is being used outside of a
parallel region.

3.6 Arrays with Non-Unit Lower Bounds 

When arrays in the serial code are declared with non-unit lower bounds, the SMS 
decomposition must reflect this fact.  Consider the following variant of Example 3-1:   

[Include file: decomp_ex6.inc]

integer im, jm, km
common /sizes_com/ im, jm, km

CSMS$DECLARE_DECOMP(DECOMP_IJ : <0,0>)

[Source file: decomp_ex6.f]

program decomp_ex6
include 'decomp_ex6.inc'
im = 15
jm = 10
km = 2

CSMS$CREATE_DECOMP(DECOMP_IJ, <im, jm>, <0,0>)
call compute
end

subroutine compute
include 'decomp_ex6.inc'
integer i, j, k

CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
integer z(0:im-1,0:jm-1,0:km-1), zsum

CSMS$DISTRIBUTE END
CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN

do 100 k=0,km-1
do 100 j=0,jm-1
do 100 i=0,im-1

z(i,j,k) = 1
100 continue

zsum = 0

do 200 k=0,km-1
do 200 j=0,jm-1
do 200 i=0,im-1

zsum = zsum + z(i,j,k)
200 continue

CSMS$PARALLEL END
CSMS$REDUCE(zsum, SUM)

print *,'zsum = ',zsum
return
end



41 

In this program, array z is declared so the first index (lower bound) is zero in each 
dimension instead of the Fortran default of one.  The bounds of loops 100 and 200 now 
start at zero.  The only difference between the directives in this example and those in 
Example 3-1 is DECLARE_DECOMP.  The new final argument, <0,0> indicates that 
array declarations have a lower bound of zero in both decomposed dimensions.   

3.7 Aligned Decompositions 

Sometimes, arrays with different global sizes are aligned so a given coordinate 
corresponds to the same physical grid point in all of them.  This may occur in 
atmospheric models based on staggered grids where the wind arrays are slightly different 
than the mass (temperature, pressure) arrays.  Sometimes, sizes of aligned arrays can be 
very different.  One example of this case is a coupled ocean-ice model where the ice 
model arrays are only defined in the northern latitudes.  Aligned arrays are illustrated in 
Figure 3-4.   
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Figure 3-4:  Aligned arrays t, u and ice in serial code.  Arrays u and ice are aligned with “parent” 
array t.  Arrays t and ice have significantly different sizes.   

SMS supports aligned arrays by allowing decompositions to be aligned.  A 
decomposition is said to be “aligned” with another decomposition if all of the global 
indices in each dimension of the aligned decomposition correspond to identical global 
indices in a second “parent” decomposition.  In particular, identical global indices in both 
decompositions will always be assigned to the same process.  Example 3-4 shows how 
the DECLARE_DECOMP and CREATE_DECOMP directives can be used to create 
aligned decompositions.  These decompositions are illustrated in Figure 3-5.   

1 program decomp_ex8
2 integer im, im_ice
3 parameter (im= 15, im_ice = 6)
4 CSMS$DECLARE_DECOMP(dh_parent, <im/3 + 2>)
5 CSMS$DECLARE_DECOMP(dh_aligned_u : <2>, ALIGNED = dh_parent)
6 CSMS$DECLARE_DECOMP(dh_aligned_ice: ALIGNED = dh_parent)
7 integer i
8 CSMS$DISTRIBUTE(dh_parent, 1) BEGIN
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9 integer t(im)
10 CSMS$DISTRIBUTE END
11 CSMS$DISTRIBUTE(dh_aligned_u, 1) BEGIN
12 integer u(2:im)
13 CSMS$DISTRIBUTE END
14 CSMS$DISTRIBUTE(dh_aligned_ice, 1) BEGIN
15 integer ice(im_ice)
16 CSMS$DISTRIBUTE END
17 integer isum
18
19 CSMS$CREATE_DECOMP(dh_parent, <im>, <1>)
20 CSMS$CREATE_DECOMP(dh_aligned_u, <im-1>)
21 CSMS$CREATE_DECOMP(dh_aligned_ice, <im_ice>)
22 CSMS$PARALLEL(dh_parent, <i>) BEGIN
23 do 100 i=1,im
24 t(i) = 1
25 100 continue
26 do 200 i=2,im
27 u(i) = 2
28 200 continue
29 CSMS$EXCHANGE(u)
30 do 300 i=1,im_ice
31 ice(i) = t(i) + u(i+1)
32 300 continue
33 isum = 0
34 do 400 i=1,im_ice
35 isum = isum + ice(i)
36 400 continue
37 CSMS$PARALLEL END
38 CSMS$REDUCE(isum, SUM)
39 print *,'isum = ',isum
40 end

Example 3-4:  An SMS program that uses aligned decompositions.   
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Figure 3-5:  Memory layout for parent decomposition dh_parent and aligned decompositions 
dh_aligned_u and dh_aligned_ice when three processes are used.  Halo regions are not 
shown.   

The optional “ALIGNED” keyword is used in the DECLARE_DECOMP directive to 
indicate that the declared decomposition is aligned with another “parent” decomposition.  
Any number of decompositions may be aligned with the same parent.  A parent 
decomposition must not be aligned.  Also, every global index of any aligned 
decomposition must be also be a valid global index in its parent.  In the 
DECLARE_DECOMP directive, declared local size is not specified for an aligned 
decomposition that uses statically allocated memory.  SMS automatically uses the 
parent’s declared local size in this case.  (The above conditions ensure that an aligned 
decomposition will never require more local storage than its parent.)  Also, aligned arrays 
can have different lower bounds than their parent as shown on line 5 of Example 3-4.  
Note that the “ALIGNED” option always comes last when it is used with the lower 
bounds option.  Lower bounds can be omitted for an aligned decomposition if they are 
identical to the parent’s lower bounds as shown in line 6.   

The syntax of the CREATE_DECOMP directive is also slightly different for aligned 
decompositions.  The halo thickness is left out because SMS automatically uses the 
parent’s halo thickness.  Index scrambling is not currently supported for aligned 
decompositions or for the parent of an aligned decomposition.   

Note that the parent decomposition is used in the PARALLEL directive in Example 3-4.  
It is always correct to use the parent decomposition in the PARALLEL directive.  In fact, 
aligned decompositions should only appear in DECLARE_DECOMP, 
CREATE_DECOMP, and DISTRIBUTE directives.   
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Finally, it is possible to create invalid decompositions when using aligned arrays.  This 
will occur whenever any process has an interior region that ends up being smaller than 
the halo region.  (SMS does not support this because halo update communication is 
inefficient.)  For example, if line 19 of Example 3-4 were modified to increase the halo 
sizes of all three decompositions to two then the interior of process P2 would be smaller 
than the halo thickness for decomposition dh_aligned_ice (see Figure 3-5).  SMS 
will detect this error at run time and print the following message:   

Aligned decomposition causes an interior to be smaller than the halo.

The simplest solution to this problem is to use a process configuration file to adjust the 
parent decomposition so the interior size in the aligned decomposition is increased (see 
Section 10.1).   
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4 Translating Array Indices 

We have seen that, in static memory models, local and global indices are different 
whenever more than one process is used so conversions between them are required.  
TO_GLOBAL (Section 4.1) and TO_LOCAL (Section 4.2) provide support for these 
conversions.  In addition, it is sometimes desirable to generate process-local loop start 
and end indices and array sizes to simplify parallelization of subroutines in both dynamic 
and static memory codes.  The TO_LOCAL (Section 4.3) directive does this as well.  
Finally, boundary condition calculations must be restricted to processes containing 
boundary points.  GLOBAL_INDEX (Section 4.4) handles these cases.   

4.1 Translating Local Indices to Global Indices 

For a static memory code, when a loop has been translated using the PARALLEL 
directive, the value of the index is now process-local as illustrated in Figure 3-2.  If the 
intent of the program is to access the global value, this index will need to be translated 
back to a global value.  This point is illustrated in Example 4-1.   

1 program tran_index1
2 implicit none
3 integer i, j
4 integer, parameter :: im = 5
5 integer, parameter :: jm = 3
6 CSMS$DECLARE_DECOMP(DECOMP_IJ, <im, jm>)
7
8 CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
9 integer x(im,jm)

10 CSMS$DISTRIBUTE END
11
12 CSMS$CREATE_DECOMP(DECOMP_IJ, <im, jm>, <0,0>)
13
14 CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN
15
16 do 100 j=1,jm
17 do 100 i=1,im
18 x(i,j) = (100 * i) + j
19 100 continue
20
21 CSMS$SERIAL BEGIN
22 do j = 1, jm
23 write(*,'(16i5)') (x(i,j),i=1,im)
24 end do
25 CSMS$SERIAL END
26 CSMS$PARALLEL END
27
28 end

Example 4-1:  An SMS parallel program that incorrectly initializes array x in loop 100.   

This program initializes array x in loop 100 (lines 16-19).  Each element of array x is 
then printed on the screen. When the serial code is run, the following is printed on the 
screen:   

>> tran_index1
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101 201 301 401 501
102 202 302 402 502
103 203 303 403 503

The same result is seen when the SMS version is run on one process.  However, the 
results are incorrect when two processes are used:   

>> smsRun –np 2 tran_index1_sms
101 201 301 101 201
102 202 302 102 202
103 203 303 103 203

Why are the results incorrect?  The PARALLEL directive has translated the i and j 
indices used to compute x in loop 100 using local indices.  However, correct operation 
requires that x be initialized using global indices as in the original serial code.  The 
solution is to use the TO_GLOBAL directive to translate the local indices to global 
indices.  In this case, line 18 would be replaced with the following code:   

CSMS$TO_GLOBAL(<1,i>, <2,j>) BEGIN
x(i,j) = (100 * i) + j

CSMS$TO_GLOBAL END

The first argument in the TO_GLOBAL directive, <1,i>, indicates that array index i 
is an index in the first decomposed dimension.  The second argument, <2,j>, indicates 
that array index j is an index in the second decomposed dimension.  All occurrences of 
indices i and j inside the TO_GLOBAL directives that are not array references will be 
converted to their global equivalents in the first and second decomposed dimensions, 
respectively.  Running the new parallel code on various numbers of processes will now 
yield the same result as the serial run.   

Note that the TO_GLOBAL directive must appear within a PARALLEL directive.  
Directives TO_LOCAL and GLOBAL_INDEX, introduced later in this section, also have 
this restriction.  Also note that since x is decomposed, the SERIAL directive is required 
to handle the write statement on line 24 as will be explained in Section 8.   

4.2 Translating Global Indices to Local Indices Inside Loops 

Sometimes, indices that have been translated to global values need to be translated back 
to local values to be used as indices into decomposed arrays in a static memory code.  
The TO_LOCAL directive is used for this translation.  Consider the following code 
fragment that uses computed indices to avoid out-of-bounds references:   

CSMS$PARALLEL(DECOMP_IJ, <i>, <j>) BEGIN
do j=1,jm

do i=1,im
CSMS$TO_GLOBAL(<1,i>) BEGIN
CSMS$TO_LOCAL(<1,im1,ip1>) BEGIN

im1 = max( 1,i-1)
ip1 = min(im,i+1)

CSMS$TO_LOCAL END
CSMS$TO_GLOBAL END
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x(i,j) = y(i,j) - y(im1,j) - y(ip1,j)
end do

end do
CSMS$PARALLEL END

The max and min functions compare index i with global index values 1 and im.  
Therefore, the TO_GLOBAL directive must be used.  The TO_GLOBAL directive will 
convert i-1 and i+1 to global values so ip1 and im1 will be computed as global 
indices.  However, ip1 and im1 are then used as indices into decomposed array x, so 
they must be converted back from global to local values to avoid out-of-bounds array 
references for multi-process runs.  The TO_LOCAL directive shown accomplishes this.  
The first argument in the TO_LOCAL directive, <1,im1,ip1>, indicates that array 
indices im1 and ip1 are both used in loops that span the first decomposed dimension.  
In this example, occurrences of either index in code enclosed by the TO_LOCAL 
directives that are not array references will be converted to their local equivalents in the 
first decomposed dimension.   

4.3 Using TO_LOCAL to Generate Process-Local Sizes and Loop 
Bounds 

In many models, large sections of code contain no dependencies that require 
communications (typically weather model physics routines).  If the array bounds and loop 
limits are passed into these routines, SMS provides a means to parallelize them without 
inserting directives into the code.  Example 4-2 shows such a case. 

1 program AVOID_DIRECTIVES
2 implicit none
3 integer i
4 integer, parameter :: im = 8
5
6 CSMS$DECLARE_DECOMP(dh, 1)
7
8 integer istart, iend
9

10 CSMS$DISTRIBUTE(dh, 1) BEGIN
11 integer, allocatable :: x(:), y(:)
12 CSMS$DISTRIBUTE END
13
14 CSMS$CREATE_DECOMP(dh, <im>, <2>)
15
16 allocate(x(im))
17 allocate(y(im))
18 x = 0.0
19
20 CSMS$PARALLEL(dh,<i>) BEGIN
21
22 do i=1,im
23 CSMS$TO_GLOBAL(<1,i>) BEGIN
24 x(i) = i
25 CSMS$TO_GLOBAL END
26 end do
27
28 y = 0.0
29
30
31 csms$to_local(<1, istart : lbound>, <1, iend : ubound>) begin
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32 istart = 1
33 iend = im - 1
34 csms$to_local end
35
36 call physics(x, lbound(x,1), ubound(x,1), istart, iend, y)
37
38 CSMS$SERIAL BEGIN
39 write(*,'(8i5)') (y(i),i=1,im)
40 CSMS$SERIAL END
41
42 CSMS$PARALLEL END
43 end
44
45 subroutine physics(arr_in, i_mem_start, i_mem_end,
46 & dim1_start, dim1_end,
47 & arr_out)
48 implicit none
49 integer i_mem_start, i_mem_end
50 integer arr_in(i_mem_start:i_mem_end)
51 integer dim1_start, dim1_end
52 integer arr_out(i_mem_start:i_mem_end)
53
54 integer i
55 do i = dim1_start, dim1_end
56 arr_out(i) = 2.0*arr_in(i)
57 end do
58 return
59 end

Example 4-2:  Sample code that shows how TO_LOCAL can be used to pass local array bounds and 
start/end loop limits to subroutines so that no directives need to be added to them.   

Program AVOID_DIRECTIVES calls subroutine physics (line 36), passing the arrays 
x and y, the starting and ending addresses of those arrays, and the starting and ending 
loop limits (istart, iend) over which the loops in physics will span.  The 
TO_LOCAL directive at lines 31-34 converts the dimensions and loop limits to their 
process local values.  During source code translation, the syntax <1, istart : lbound> 
causes replacement of instances of istart with the local index of the first interior point 
for the first decomposed dimension for the given process.  Figure 4-1 shows all the sizes 
and bounds for this case, assuming the program is run on 2 processes.   

The result is that, inside subroutine physics, i_mem_start, i_mem_end, 
dim1_start, dim1_end, dim2_start, and dim2_end all have the correct 
process-local values.  Consequently, subroutine physics produces the right answer for 
any process decomposition, even though it contains no SMS directives.   
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Figure 4-1:  Process layout and memory bounds of arrays arr_in and arr_out and loop bounds 
for a 2-process run of Example 4-2.   

4.4 Using Global Index to Handle Boundary Conditions 

Consider the following code fragment that is enclosed in a PARALLEL directive but is 
not inside a loop:   

id = 5
jd = 4
x(id,jd) = 10

The following use of TO_LOCAL would be incorrect:   

CSMS$TO_LOCAL(<1,id>,<2,jd>) BEGIN
id = 5
jd = 4

CSMS$TO_LOCAL END
x(id,jd) = 10

The translation of id and jd from global values to process-local values will work fine on 
the process that "owns" global point (5,4).  However, the translation will be erroneous 
on processes that do not own global point (5,4) because there is no valid local 
equivalent of these global coordinates on those processes.  In order to restrict the 
execution of these statements to the process that owns the data, the GLOBAL_INDEX 
directive must be used as shown below:   

id = 5
jd = 4

CSMS$GLOBAL_INDEX(1,2) BEGIN
x(id,jd) = 10

CSMS$GLOBAL_INDEX END
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The GLOBAL_INDEX directive ensures that the execution of the enclosed assignment 
statement will only be permitted on the process that owns the global point (id,jd).  In 
addition, if index translation is needed, id and jd will be translated to process-local 
equivalents.  The first argument in the directive, 1, indicates that all array indices 
corresponding to the first decomposed dimension are affected.  The second argument, 2, 
indicates that all array indices corresponding to the second decomposed dimension are 
affected.   

Consider the following example that initializes the boundaries of an array that is 
decomposed in two dimensions:   

1 subroutine compute(im,jm)
2 integer im,jm
3 CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
4 integer x(im,jm)
5 CSMS$DISTRIBUTE END
6 integer i, j
7 CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN
8 do 100 j=1,jm
9 do 100 i=1,im

10 x(i,j) = (100 * i) + j
11 100 continue
12 do 110 j=2,jm-1
13 CSMS$GLOBAL_INDEX(1) BEGIN
14 x( 1,j) = 0
15 x(im,j) = 0
16 CSMS$GLOBAL_INDEX END
17 110 continue
18 do 120 i=2,im-1
19 CSMS$GLOBAL_INDEX(2) BEGIN
20 x(i, 1) = 0
21 x(i,jm) = 0
22 CSMS$GLOBAL_INDEX END
23 120 continue
24 CSMS$GLOBAL_INDEX(1,2) BEGIN
25 x( 1, 1) = 0
26 x(im, 1) = 0
27 x( 1,jm) = 0
28 x(im,jm) = 0
29 CSMS$GLOBAL_INDEX END
30
31 CSMS$PARALLEL END
32
33 CSMS$SERIAL BEGIN
34 print *,'ARRAY x:'
35 print *, x
36 CSMS$SERIAL END
37 return
38 end

Example 4-3:  An SMS subroutine that illustrates the use of the GLOBAL_INDEX directive to 
initialize array boundaries.   

This subroutine initializes array x as in previous examples (lines 8-11).  It is assumed this 
is a dynamic memory code so TO_GLOBAL is not required.  It then proceeds to set the 
boundary values of x to zero in lines 12 through 28.  Three pairs of GLOBAL_INDEX 
directives handle the necessary translations.  The first pair deals with global indices 1 and 
im in loop 110 while the second pair deals with global indices 1 and jm in loop 120.  
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The third pair handles global indices in the four assignment statements on lines 25 
through 28.  In each case, the enclosed statements are only executed on the appropriate 
processes.  The SERIAL directive on line 33 will be discussed in Section 8.   

When the serial and parallel codes are run, the following is printed on the screen 
(assuming values of im and jm as in previous examples):   

ARRAY x:
0 0 0 0 0
0 202 302 402 0
0 0 0 0 0

4.5 Using GLOBAL_INDEX With Aligned Decompositions 

Care must be taken when using aligned decompositions in cases where the size of an 
aligned dimension is significantly smaller than the size of the corresponding dimension in 
the parent.  Problems can occur when handling boundaries of aligned arrays using 
GLOBAL_INDEX.  For example, consider the following code inserted after loop 300 in 
Example 3-4:   

CSMS$GLOBAL_INDEX(<dh_aligned_ice: 1>) BEGIN
ice(5) = ice(6)

CSMS$GLOBAL_INDEX END

This code will fail at run time because it assumes that global indices 5 and 6 reside on 
the same process.  However, when three processes are used, these global indices reside 
on different processes as illustrated in Figure 3-5.  The simplest solution to this problem 
is to use a process configuration file to adjust the parent decomposition so the global 
indices reside on the same process in the aligned decomposition (see Section 10.1).   

Finally, notice that the optional syntax that allows a decomposition to be explicitly 
specified is used in the GLOBAL_INDEX directive above.  Whenever 
GLOBAL_INDEX is used with an aligned array inside a PARALLEL directive that 
specifies the parent decomposition, (as on line 22 of Example 3-4), the aligned 
decomposition must be explicitly specified.  This requirement will be relaxed in a future 
release of SMS.   
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5 Handling Adjacent Dependencies 

5.1 Further Details on EXCHANGE 

In Section 2.5, we saw how the EXCHANGE directive was used to implement 
communications needed to resolve adjacent dependencies for a simple one-dimensional 
decomposition.  In this sub-section, we expand on that discussion by examining the 
treatment of two-dimensional decompositions and larger stencils, and by discussing other 
miscellaneous details about EXCHANGE.   

5.1.1 Using EXCHANGE in the Case of Two-Dimensional Decompositions  

We begin by modifying the Laplace program (Example 2-4) introduced in Section 2.5 so 
that a two dimensional decomposition is used.  Two-dimensional data decompositions 
allow parallel programs to scale to a large number of processes.   

1 program basic_ex_2d_decomp
2 include 'basic.inc'
3 im = 10
4 jm = 10
5 CSMS$CREATE_DECOMP(DECOMP_I, <im,jm>, <1,1>)
6 call laplace
7 end
8
9 subroutine laplace

10 include 'basic.inc'
11 integer i, j, iter
12 real max_error
13 real tolerance
14 parameter (tolerance = 0.001)
15 CSMS$DISTRIBUTE(DECOMP_I, 1, 2) BEGIN
16 real f(im,jm), df(im,jm)
17 CSMS$DISTRIBUTE END
18 CSMS$PARALLEL(DECOMP_I,<i>, <j>) BEGIN
19 do 100 j=1,jm
20 do 100 i=1,im
21 f(i,j) = 0.0
22 100 continue
23 do 110 j=1,jm
24 CSMS$GLOBAL_INDEX(1) BEGIN
25 f( 1,j) = 2.0
26 f(im,j) = 2.0
27 CSMS$GLOBAL_INDEX END
28 110 continue
29 do 120 i=1,im
30 CSMS$GLOBAL_INDEX(2) BEGIN
31 f(i, 1) = 2.0
32 f(i,jm) = 2.0
33 CSMS$GLOBAL_INDEX END
34 120 continue
35 iter = 0
36 max_error = 2.0 * tolerance
37 C main iteration loop...
38 do while ((max_error .gt. tolerance) .and. (iter .lt. 1000))
39 iter = iter + 1
40 max_error = 0.0
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41 CSMS$EXCHANGE(f)
42 do 200 j=2,jm-1
43 do 200 i=2,im-1
44 df(i,j) = 0.25*(f(i-1,j) + f(i+1,j) + f(i,j-1) +
45 & f(i,j+1)) - f(i,j)
46 200 continue
47 do 300 j=2,jm-1
48 do 300 i=2,im-1
49 if (max_error .lt. abs(df(i,j))) then
50 max_error = abs(df(i,j))
51 endif
52 300 continue
53 CSMS$REDUCE(max_error, MAX)
54 do 400 j=2,jm-1
55 do 400 i=2,im-1
56 f(i,j) = f(i,j) + df(i,j)
57 400 continue
58 enddo
59
60 CSMS$PARALLEL END
61 print *, 'Solution required ',iter,' iterations'
62 print *, 'Final error = ', max_error
63
64 return
65 end

Example 5-1:  Two-dimensional decomposition version of Example 2-4 

The CREATE_DECOMP directive now lists two decomposed dimensions (with global 
sizes im and jm).  The halo width for each dimension is 1 in this case.  As discussed in 
Section 3.2, the DISTRIBUTE, PARALLEL, and GLOBAL_INDEX directives are 
modified to handle the 2-D decompositions.  Although the communication patterns 
required to support 2-dimensional decompositions are more complex than the 1-
dimensional case, SMS hides all of these details.  Thus, the EXCHANGE directive is 
unchanged.  Figure 5-1 shows some sample stencils overlaid on a 3x3 process 
decomposition of the problem.  The stencil centered at global coordinate (3,2) only 
requires P1 communicate with P2.  However, the stencil centered at global coordinate 
(4,4) requires P5 communicate with both P2 and P4.  Figure 5-2 and Figure 5-3 show 
the full communications pattern for a 2-D exchange.  Notice that the corner halo points of 
the center process are filled with data from the corresponding corner processes in the 
drawings.   
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Figure 5-1:  Sample stencils overlaid on a 3x3 process decomposition for the Laplace problem.  The 
halo regions are the shaded areas.  The white boxes are referred to as the "interior" of  each 
process's sub-domain.   
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Figure 5-2:  Schematic of how data are distributed among 9 processes just prior to an exchange 
operation.  The big boxes contain the interior data.  The boxes on the edges are the halo regions.   
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Figure 5-3:  Illustration of the data distribution just after a 2-dimensional exchange for a problem 
with non-periodic boundaries.   

5.1.2 Larger Stencils 

In  Figure 2-10, the widths of the stencil for the calculation of df in the laplace program 
are one point in each direction.  Since this is the only computation in Laplace requiring 
"exchange", it is clear that the halo widths specified by CREATE_DECOMP must be 1 in 
the i dimension (line 5).  However, suppose we modify Example 2-4 by adding 
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additional calculations of x that step 2 points into the halo region (lines 60-64 in Example 
5-2 below).   

1 program basic_ex_halo2
2 include 'basic.inc'
3 im = 10
4 jm = 10
5 CSMS$CREATE_DECOMP(DECOMP_I, <im>, <2>)
6 call laplace
7 end
8
9 subroutine laplace

10 include 'basic.inc'
11 integer i, j, iter
12 real max_error
13 real tolerance
14 parameter (tolerance = 0.001)
15 CSMS$DISTRIBUTE(DECOMP_I, <im>) BEGIN
16 real f(im,jm), df(im,jm)
17 CSMS$DISTRIBUTE END
18 CSMS$PARALLEL(DECOMP_I,<i>) BEGIN
19 do 100 j=1,jm
20 do 100 i=1,im
21 f (i,j) = 0.0
22 df(i,j) = 0.0
23 100 continue
24 do 110 j=1,jm
25 CSMS$GLOBAL_INDEX(1) BEGIN
26 f( 1,j) = 2.0
27 f(im,j) = 2.0
28 CSMS$GLOBAL_INDEX END
29 110 continue
30 do 120 i=1,im
31 f(i, 1) = 2.0
32 f(i,jm) = 2.0
33 120 continue
34 iter = 0
35 max_error = 2.0 * tolerance
36 C main iteration loop...
37 do while ((max_error .gt. tolerance) .and. (iter .lt. 1000))
38 iter = iter + 1
39 max_error = 0.0
40 CSMS$EXCHANGE(f)
41 do 200 j=2,jm-1
42 do 200 i=2,im-1
43 df(i,j) = 0.25*(f(i-1,j) + f(i+1,j) + f(i,j-1) + f(i,j+1))
44 & - f(i,j)
45 200 continue
46 do 300 j=2,jm-1
47 do 300 i=2,im-1
48 if (max_error .lt. abs(df(i,j))) then
49 max_error = abs(df(i,j))
50 endif
51 300 continue
52 CSMS$REDUCE(max_error, MAX)
53 do 400 j=2,jm-1
54 do 400 i=2,im-1
55 f(i,j) = f(i,j) + df(i,j)
56 400 continue
57 enddo
58
59 CSMS$EXCHANGE(df)
60 do j = 1, jm
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61 do i = 3, im-2
62 f(i,j) = f(i,j) + 2.0*df(i,j) - df(i-2,j) - df(i+2,j)
63 end do
64 end do
65
66 CSMS$PARALLEL END
67 print *, 'Solution required ',iter,' iterations'
68 print *, 'Final error = ', max_error
69
70 end

Example 5-2:  Modified version of Example 2-4 with additional code that has a stencil width of 2 in 
the i direction.   

For the calculations starting at line 60, the width of the stencil is 2 in the i direction as 
shown in Figure 5-4.   

 
df2(i,j) = 2.0*df(i,j) - df(i-2,j) - df(i+2,j)

df(i+2,j)df(i-2,j)

New Stencil 
Point 

New Stencil 
Point df(i,j)

 
Figure 5-4:  Modified stencil for additional calculations in Example 5-2.  This time the stencil width is 
2 in the i direction.   

This program now has two calculations involving the same dimension of the same 
decomposition with different stencil widths.  SMS handles this by requiring the 
programmer to make the halo width of the decomposition equal to the larger of the two 
widths.  It is up to the programmer to determine the width of the largest stencil required 
in each dimension for every decomposition.  The CREATE_DECOMP directive (line 5) 
shows the correct halo width specification (<2>).   

5.1.3 Exchanges in Static Memory Models 

For static memory models that require exchanges, the process-local array sizes specified 
in the DECLARE_DECOMP directive must be large enough to include the halo regions.  
In the program fragment below, the halo size is one.  Since halo regions are on each side, 
the declared local array size is the global size (im) divided by the number of processes 
(4) plus 2 to accommodate the halo regions and plus 1 since 4 does not divide 30 evenly.   

program STATIC_MEMORY_EXCHANGE
implicit none
integer im
parameter(im = 30)
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integer jm
parameter(jm = 5)

CSMS$DECLARE_DECOMP(my_dh, <im/4 + 2 + 1>)

5.1.4 Miscellaneous 

Another point about EXCHANGE is that, for both static and dynamic memory models, 
the number of processes used must be small enough to ensure the size of the smallest 
interior region is greater than the halo width in each decomposed dimension.  SMS will 
issue the following run-time error message if this condition is violated:   

Process: 0 Error status= -2100 MSG IS: NNT_DECOMP_ERR

Also, we point out that EXCHANGE automatically implements the process 
synchronization required for the parallel code to produce correct results.  A process 
scheduled to receive data from a neighbor will wait until the data have fully arrived 
before proceeding with the next set of calculations.  A side effect of this synchronization 
is that the EXCHANGE directive cannot be used inside a decomposed loop because the 
number of iterations may not be the same on every process, causing deadlock.   

5.2 Performance Optimizations 

In this section, some optimizations are described that can be employed to reduce the 
number of exchanges and the amount of data exchanged in a parallel SMS program.   

5.2.1 Limited-Thickness Exchanges 

Choosing a single halo width could mean some data are communicated unnecessarily.  
The exchange at line 40 in Example 5-2 is an example of such inefficiency.  The stencil 
of the computations in loop 200 is still one point wide in the i direction.  However, since 
the halo width of f is now 2 in this dimension, one extra halo point on each side for each 
j index will be communicated unnecessarily.  This extra communication can be 
eliminated by using a variant of the EXCHANGE directive that only exchanges part of 
the halo region:   

CSMS$EXCHANGE(f <1,1>)

This option to EXCHANGE tells SMS to exchange only the first halo point in the lower 
and upper halo regions.   

If we were to modify Example 5-2 to use a two dimensional decomposition, the 
CREATE_DECOMP directive would look as follows:   

CSMS$CREATE_DECOMP(DECOMP_IJ, <im,jm>, <2,1>)

Now, the maximum stencil width is 2 in the first decomposed dimension (for the 
exchange at line 59) and 1 in the second decomposed dimension (for the exchange at line 
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40).  If the exchange at line 40 only requires 1 point in each direction, it could be 
optimally written as:   

CSMS$EXCHANGE(f <1,1> <1,1>)

Since the exchange at line 59 is only needed to update points in the i dimension, it would 
optimally be written as:   

CSMS$EXCHANGE(df <2,2> <0,0>)

5.2.2 Aggregating Exchanges 

The program SLOW in Example 5-3, uses a statically declared one-dimensional 
decomposition (line 10) to distribute the arrays a, b and c.  In this example, a halo 
thickness of one is defined by CREATE_DECOMP (line 24).  After a series of iterations 
(line 39) a global sum is produced with the REDUCE directive (line 63).   

1 program SLOW
2 implicit none
3 integer im
4 parameter(im = 30)
5 integer jm
6 parameter(jm = 5)
7 integer iterations
8 parameter(iterations = 3)
9

10 CSMS$DECLARE_DECOMP(my_dh, <im/3 + 2>)
11
12 CSMS$DISTRIBUTE(my_dh, <im>) BEGIN
13 real a(im)
14 real b(im,jm)
15 real c(im,jm)
16 CSMS$DISTRIBUTE END
17
18 real ysum
19
20 integer i
21 integer j
22 integer iter
23
24 CSMS$CREATE_DECOMP(my_dh, <im>, <1>)
25
26 ysum = 0.0
27 b = 0.0
28 c = 0.0
29
30 do j = 1, jm
31
32 CSMS$PARALLEL(my_dh, <i>) BEGIN
33 do i = 1, im
34 CSMS$TO_GLOBAL(<1, i>) BEGIN
35 a(i) = real(3*i + 2 + j)
36 CSMS$TO_GLOBAL END
37 end do
38
39 do iter = 1, iterations
40
41 CSMS$EXCHANGE(a)
42
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43 do i = 2, im-1
44 b(i,j) = a(i+1) + a(i-1)
45 c(i,j) = b(i,j) + c(i,j)
46 end do
47
48 CSMS$EXCHANGE(b)
49 CSMS$EXCHANGE(c)
50
51 do i = 2, im-1
52 a(i) = b(i+1,j) + b(i-1,j) + c(i+1,j) - c(i-1,j)
53 end do
54
55 end do
56
57 do i = 2, im - 1
58 ysum = ysum + a(i)
59 end do
60
61 end do
62
63 CSMS$REDUCE(ysum, SUM)
64
65 print *, 'ysum is ', ysum
66 CSMS$PARALLEL END
67 end

Example 5-3:  A sub-optimal version of a program parallelized using SMS. 

SMS provides the capability to aggregate the exchanges of multiple variables.  If lines 
48-49 are replaced with  

CSMS$EXCHANGE(b,c)

then SMS will combine the communications of the corresponding halo regions of b and c 
as shown in Figure 5-5.  Since the number of messages sent is halved, performance on 
high-latency machines will improve.   
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Figure 5-5:  An illustration of how communications are aggregated to reduce latency for a portion of 
the exchange of a and b.  The last column of process P1’s variables are communicated as a single 
message to P2 where they are unpacked into the corresponding halo regions.   

5.2.3 Exchanging Array Sections 

Sometimes, it is not necessary to exchange an entire array.  For example, in the following 
code fragment an adjacent dependence may only apply to some of the vertical levels of a 
3D array:   

CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
real x(im,jm,km)
real y(im,jm,km)

CSMS$DISTRIBUTE END
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CSMS$EXCHANGE(x <0,1> <0,0>)
do 100 k = 1,2
do 100 j = 1,im
do 100 i = 1,im

y(i,j,k) = x(i+1,j,k) – x(i,j,k)
100 continue

However, the exchange directive will exchange array x at all k levels even though the 
dependence exists only for k=1 and k=2.  This exchange directive can be optimized 
using standard Fortran array syntax as shown below: 

CSMS$EXCHANGE(x(:,:,1:2) <0,1> <0,0>)

Now, only the k=1 and k=2 levels of array x will be exchanged.  Note that use of array 
section syntax will only improve performance for subsections in non-decomposed 
dimensions.   

5.2.4 Trading Communications for Computations Using HALO_COMP 

Example 5-3 can be further optimized by trading communication for redundant 
computations in the halo region as is briefly discussed in the SMS overview paper.  This 
is done using the HALO_COMP directive to modify the ranges of parallel loops to 
include computations in the halo regions.  These extra computations can eliminate the 
need for some exchanges.   

Figure 5-6, Figure 5-7, and Figure 5-8 illustrate how redundant computations work.  
Without the HALO_COMP directive, b and c are only computed in interior points 
using stencils like that shown in Figure 5-6.  Halo regions of b and c must then be 
updated via an exchange for a to be properly computed as shown in Figure 5-7.  A 
computation one step into the halo region (Figure 5-8) requires that a have a halo size of 
two instead of one.  Since process P1 now computes points such as b(4,2) and 
c(4,2), the computation of a(3,2) shown in Figure 5-7 can proceed without having 
exchanged b and c.  However, extra computations are done since process P2 must also 
perform exactly the same computation for its corresponding interior points b(4,2) and 
c(4,2),  

Use of the HALO_COMP directive in this example reduces latency because the 
exchanges of b and c are no longer required.  In addition, communication bandwidth is 
reduced.  Although the amount of data communicated by the exchange of a has doubled, 
this is more than offset by the elimination of the exchanges of b and c.   
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Figure 5-6:  Memory layout of a (assuming im=9, jm=3) with sample stencil for calculations of b 
and c overlaid.   
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Figure 5-7:  Memory layout of b and c with sample stencil for calculation of a overlaid.  The halo 
regions of b and c must be updated via exchange for the calculation of a to be executed correctly.   



65 

 

P1 P2 P3 

1 3 2 4 5 6 75432 8 8 9 7 65

1 

2 
3 

“b”, “c” stencils  
centered in the halo 

Updated halo 
region 

0 -1 10 11

 
Figure 5-8:  Modified memory layout of a with new sample stencil centered in the halo region.  The 
computation of point b(4,2) and c(4,2) effectively updates the halo regions of b and c so that the 
computation of a in Figure 5-7 can be made without an exchange.   

A net improvement in performance by this technique will only be realized if the cost of 
the additional computation by each process is less than the cost of exchanging b and c.  
Whether or not the code runs faster will, in general, depend on the communication 
patterns in the program, the number of processes used, and the target hardware platform.   

A version of Example 5-3 that implements redundant calculations is shown in Example 
5-4.  The HALO_COMP directive on line 43 tells SMS that the enclosed loop should be 
executed 1 step into the halo region in each direction.  This updates b and c sufficiently 
to satisfy the dependencies in the loop at lines 52-54.  DECLARE_DECOMP and 
CREATE_DECOMP have been modified to accommodate the new halo size of 2.  The 
exchanges of b and c have been eliminated.   

1 program FASTER
2 implicit none
3 integer im
4 parameter(im = 30)
5 integer jm
6 parameter(jm = 5)
7 integer iterations
8 parameter(iterations = 3)
9

10 CSMS$DECLARE_DECOMP(my_dh, <im/3 + 4>)
11
12 CSMS$DISTRIBUTE(my_dh, <im>) BEGIN
13 real a(im)
14 real b(im,jm)
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15 real c(im,jm)
16 CSMS$DISTRIBUTE END
17
18 real ysum
19
20 integer i
21 integer j
22 integer iter
23
24 CSMS$CREATE_DECOMP(my_dh, <im>, <2>)
25
26 ysum = 0.0
27 b = 0.0
28 c = 0.0
29
30 do j = 1, jm
31
32 CSMS$PARALLEL(my_dh, <i>) BEGIN
33 do i = 1, im
34 CSMS$TO_GLOBAL(<1, i>) BEGIN
35 a(i) = real(3*i + 2 + j)
36 CSMS$TO_GLOBAL END
37 end do
38
39 do iter = 1, iterations
40
41 CSMS$EXCHANGE(a)
42
43 CSMS$HALO_COMP(<1,1>) BEGIN
44 do i = 2, im-1
45 b(i,j) = a(i+1) + a(i-1)
46 c(i,j) = b(i,j) + c(i,j)
47 end do
48 CSMS$HALO_COMP END
49
50
51
52 do i = 2, im-1
53 a(i) = b(i+1,j) + b(i-1,j) + c(i+1,j) - c(i-1,j)
54 end do
55
56 end do
57
58 do i = 2, im - 1
59 ysum = ysum + a(i)
60 end do
61
62 end do
63
64 CSMS$REDUCE(ysum, SUM)
65
66 print *, 'ysum is ', ysum
67
68 CSMS$PARALLEL END
69
70 end

Example 5-4:  A version of Example 5-3 that has been optimized by trading communications for 
redundant calculations in the halo region.   
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5.2.5 Using HALO_COMP and TO_LOCAL To Make Subroutines Do 
Redundant Computations 

We saw in Section 4.3 how the TO_LOCAL directive can be used to parallelize 
subroutines without requiring directives inside the subroutine code.  The approach works 
by making the subroutines operate on the interior of the process local arrays.  Now, 
suppose we want those called routines to do redundant computations in the halo region to 
avoid communication.  Example 5-5 shows a modified version of Example 4-2, 
illustrating how this is done.   

1 program tran_index7
2 implicit none
3 integer i
4 integer, parameter :: im = 8
5
6 CSMS$DECLARE_DECOMP(dh, 1)
7
8 integer istart, iend
9

10 CSMS$DISTRIBUTE(dh, 1) BEGIN
11 integer, allocatable :: x(:), y(:), z(:)
12 CSMS$DISTRIBUTE END
13
14 CSMS$CREATE_DECOMP(dh, <im>, <2>)
15
16 allocate(x(im))
17 allocate(y(im))
18 allocate(z(im))
19 x = 0.0
20 CSMS$PARALLEL(dh,<i>) BEGIN
21
22 CSMS$HALO_COMP(<1,1>) BEGIN
23 do i=1,im
24 CSMS$TO_GLOBAL(<1,i>) BEGIN
25 x(i) = i
26 CSMS$TO_GLOBAL END
27 end do
28
29 y = 0.0
30
31
32 CSMS$TO_LOCAL(<1, istart : lbound>, <1, iend : ubound>) BEGIN
33 istart = 1
34 iend = im - 1
35 CSMS$TO_LOCAL END
36 CSMS$HALO_COMP END

37 call physics(x, lbound(x,1), ubound(x,1), istart, iend, y)
38
39 do i = 1, im - 1
40 z(i) = y(i) + y(i+1)
41 end do
42
43 CSMS$SERIAL BEGIN
44 write(*,'(8i5)') (z(i),i=1,im)
45 CSMS$SERIAL END
46
47 CSMS$PARALLEL END
48 end
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Example 5-5:  Modified version of Example 4-2 that passes lower and upper bounds into subroutine 
physics so that it does redundant computations for one point in the halo region for each dimension 
and for each direction.   

Since the calculations of istart and iend are now contained within both a 
TO_LOCAL and HALO_COMP directive, the effect is to change the lower and upper 
bounds passed to the physics so that it will do redundant computations for one point in 
the halo region for each direction.  Figure 5-9 shows the new table of lower and upper 
bounds (compare to the table in Figure 4-1).  Now, following the call to physics, 
variable y contains valid data one point into the halo region.  Consequently, an 
EXCHANGE directive is not need prior to the loop at lines 39-41.   

    
                            Process          i_mem_start     i_mem_end    dim1_start   dim1_end 
 
                                  P1                      -1                   6                   1              5 
                                  P2                       3                   10                 4              8  
Figure 5-9:  Table of memory and computational bounds for Example 5-5.  Compare the 
dim1_start and dim1_end values to those the table in Figure 4-1.  The memory start and end 
values are unchanged.   
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6 Handling Complex Dependencies Using TRANSFER 

Section 2.7 introduced the TRANSFER directive and explained how it could be used to 
handle complex dependencies in more than one dimension (see Example 2-5).  In Section 
6.1, we show how TRANSFER can be used when either the source or destination array 
are non-decomposed.  In Section 6.2, we examine how TRANSFER can be applied to the 
parallelization of spectral models.  TRANSFER is also used for inter-grid interpolation as 
described in Section 11.2.   

Like EXCHANGE, TRANSFER automatically implements the process synchronization 
required for the parallel code to produce correct results.  A side effect of this 
synchronization is that the TRANSFER directive cannot be used inside a decomposed 
loop because the number of iterations may not be the same on every process, causing 
deadlock.   

6.1 Further Details about TRANSFER 

While TRANSFER can be used to generate communications to transpose arrays 
decomposed in one or more dimensions, it can also be used when either the source or 
destination arrays are not decomposed.  If the destination array is not decomposed but the 
source is, then the TRANSFER directive effectively implements a “gather” of the source 
into the destination as illustrated in Figure 6-1.  After the transfer, the entire array is 
replicated on each process.  Since the local data for each process must be communicated 
to all other processes, this operation can be quite expensive.   

 

  

  

“source” 

“source” 

“destination”

“destination”

 
Figure 6-1:  Schematic of the behavior of TRANSFER when the source array is decomposed and the 
destination array is NOT decomposed.  The effect is to “gather” the process-local data from the 
source array into the globally-sized destination array.   
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If the source array is not decomposed but the destination array is decomposed then 
TRANSFER performs an "extract" of data from the source into the destination as shown 
in Figure 6-2.  Note that no communication is needed in this case since each process has 
access to all needed data to begin with.  Note that the SERIAL directive also performs 
“gather” and “extract” operations and is often easier to use than TRANSFER (see Section 
8).   

 

  
“source” “destination”

  “source” “destination”

 
Figure 6-2:  Schematic of the behavior of TRANSFER when the source array is NOT decomposed 
and the destination array is decomposed.  The effect is to “extract” the appropriate data from the 
globally sized source array into the process-local destination array. 

As in the case of EXCHANGE, TRANSFERs can be aggregated as follows to reduce 
latency:   

CSMS$TRANSFER(<source1, destination1>, <source2, destination2>) BEGIN
Serial code to be replaced...

CSMS$TRANSFER END

Note that, for all TRANSFER directives, the type and rank of the source and destination 
arrays must be the same.  However, the array sizes may differ.   

6.2 Applying TRANSFER to Spectral Models 

Many spectral models have multiple phases of computation that repeat in a fixed pattern.  
Phases often have different optimal decompositions.  Therefore, performance may be 
maximized by using multiple decompositions and transferring between them.  Consider 
the case of one-dimensional decompositions for these models.  The physical 
parameterizations contain complex dependencies in the vertical.  This makes it efficient 
to decompose in one of the horizontal dimensions.  At the same time, many computer 
system vendors provide highly optimized assembly FFT libraries that far out-perform 
anything that can be done with hand-tuned Fortran code.   
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Taking advantage of this serial code requires decomposing in a dimension other than i.  
Typically, the data are decomposed in the j dimension during physics and FFT 
computations (decomposition "a" in Figure 3-1).  The Legendre transformations contain 
complex dependencies in the j dimension.  Therefore, a second decomposition in either 
i (decomposition "b" in Figure 3-1) or k (decomposition "c" in Figure 3-1) is needed for 
optimal performance during these calculations.  The TRANSFER directive provides the 
means to transpose the data from decomposition "a" to ("b" or "c") and back again.  For 
large numbers of processes, 2D decompositions are needed to ensure that all processes 
have work to do.  In this case, physics computations may be done using decomposition 
“d”, FFT computations may be done using decomposition “e”, and Legendre transform 
computations may be done using decomposition “f”.   
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7 Handling Global Dependencies Using REDUCE 

In Section 2.3, we saw how the REDUCE directive was used to implement 
communication needed to do global summations and maxima.  In this section we examine 
the REDUCE directive in more detail.  In addition to giving more examples of the 
directive, Section 7.1 also shows that the form of REDUCE introduced in Section 2.3.3 
(which will be referred to as "Standard Reductions") does not necessarily produce the bit-
wise exact same answer as the serial code for global summations of floating point 
numbers.  Section 7.2 introduces a second form of REDUCE called "Bit-wise Exact" that 
does produce the bit-wise exact same answer, regardless of the number of processes.  
Although quite useful for debugging, the second form has the drawback that it runs 
slowly.   

Like EXCHANGE, both forms of REDUCE automatically implement the process 
synchronization required for the parallel code to produce correct results.  A side effect of 
this synchronization is that the REDUCE directive cannot be used inside a decomposed 
loop because the number of iterations may not be the same on every process, causing 
deadlock.   

7.1 More on Standard Reductions 

In addition to global summations and maxima, the REDUCE directive can be used to 
generate global minima and to reduce arrays as seen in Example 7-1.  Global minima are 
generated by specifying the keyword MIN (line 52).  Also notice that reductions can be 
aggregated in the same way as exchanges (line 50).  One of the variables reduced is the 
non-decomposed array xsum (line 50).  The summation of xsum looks like the 
following:   

Xsum_global(1) = Xsum_local1 (1) + Xsum_local2 (1) + ...
Xsum_global(2) = Xsum_local1 (2) + Xsum_local2 (2) + ...

.

.

.

where Xsum_local(j) is the value of process-local xsum(j) on process P and 
Xsum_global is the value of xsum after the global summation is complete.   

1 program REDUCTIONS
2 implicit none
3 include 'basic.inc'
4
5 im = 50
6 jm = 2
7
8 CSMS$CREATE_DECOMP(DECOMP_I, <im>, <0>)
9

10 call DO_THEM
11
12 end
13
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14 subroutine DO_THEM
15 implicit none
16 include 'basic.inc'
17
18 CSMS$DISTRIBUTE(DECOMP_I, <im>) BEGIN
19 real x(im,jm)
20 real y(im,jm)
21 CSMS$DISTRIBUTE END
22
23 real xsum(jm)
24 real ysum
25 real xmin
26 real xmax
27
28 integer i
29 integer j
30
31 open (10, file='reduce_data', form='unformatted')
32 read (10) x, y
33 close(10)
34
35 CSMS$PARALLEL(DECOMP_I, <i>) BEGIN
36 xsum = 0.0
37 ysum = 0.0
38 xmax = -999.0
39 xmin = 999.0
40
41 do j = 1, jm
42 do i = 1, im
43 xsum(j) = xsum(j) + x(i,j)
44 ysum = ysum + y(i,j)
45 xmax = max(xmax, x(i,j))
46 xmin = min(xmin, x(i,j))
47 end do
48 end do
49
50 CSMS$REDUCE(xsum, ysum, SUM)
51 CSMS$REDUCE(xmax, MAX)
52 CSMS$REDUCE(xmin, MIN)
53
54 print *
55 print *, 'Global values'
56 do j = 1, jm
57 write(*,100) j, xsum(j)
58 end do
59 write(*,150) ysum
60 write(*,200) xmax
61 write(*,300) xmin
62
63 100 format('j ', i2, ' xsum = ', F13.5)
64 150 format('ysum = ', F13.5)
65 200 format('xmax = ', F13.5)
66 300 format('xmin = ', F13.5)
67
68 CSMS$PARALLEL END
69
70 return
71 end

Example 7-1:  Program showing additional examples of how the REDUCE directive can be used.   

If we were to modify Example 7-1 so that the j dimension is also decomposed and were 
to make xsum a decomposed variable, then the reduction of xsum would FAIL.  This 
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would happen because SMS does not currently support reductions that produce 
decomposed variables.  (This would require doing the reduction over a subset of the 
processes.)   

When run with 2 processes, program REDUCTIONS yields the following results:   

Global values
j 1 xsum = 1258.28589
j 2 xsum = 1310.71448
ysum = -2464.28540
xmax = 100.00000
xmin = -100.00000

However, when run with 4 processes, the results are:   

Global values
j 1 xsum = 1258.28577
j 2 xsum = 1310.71436
ysum = -2464.28613
xmax = 100.00000
xmin = -100.00000

Notice that the values for xsum and ysum are slightly different between the 2 and 4 
process runs.  We will now see why this is the case.   

7.2 Bit-wise Exact Reductions 

The differences in results in Example 7-1 are due to round-off error in the floating-point 
addition.  The numbers are added in a different order in the 4-process case as compared 
to the 2-process case because the sums are first computed locally before being combined 
(see Section 2.3.3).  In weather and climate models (which are non-linear systems), if the 
global sums feed back into the main model equations, these slight errors can grow and 
propagate; potentially yielding completely different model predictions for runs with 
differing numbers of processes.   

For debugging purposes, it is useful to avoid these round-off errors.  In fact, this is 
necessary for correct operation of the COMPARE_VAR debugging feature (see Section 
15.1).  To do this, SMS offers a form of REDUCE that produces the bit-wise exact same 
answer for any number of processes.  Example 7-2 below shows how this works.   

1 program EXACT_REDUCTIONS
2 implicit none
3 include 'basic.inc'
4
5 im = 50
6 jm = 2
7
8 CSMS$CREATE_DECOMP(DECOMP_I, <im>, <0>)
9

10 call DO_THEM
11
12 end
13



75 

14 subroutine DO_THEM
15 implicit none
16 include 'basic.inc'
17
18 CSMS$DISTRIBUTE(DECOMP_I, <im>) BEGIN
19 real x(im,jm), y(im,jm)
20 CSMS$DISTRIBUTE END
21
22 real ysum
23
24 integer i
25 integer j
26
27 open (10, file='reduce_data', form='unformatted')
28 read (10) x, y
29 close(10)
30
31 CSMS$PARALLEL(DECOMP_I, <i>) BEGIN
32
33 CSMS$REDUCE(ysum, SUM) BEGIN
34 ysum = 0.0
35 do j = 1, jm
36 do i = 1, im
37 ysum = ysum + y(i,j)
38 end do
39 end do
40 CSMS$REDUCE END
41
42 print *
43 print *, 'Global values'
44 write(*,150) ysum
45
46 150 format('ysum = ', F13.5)
47
48 CSMS$PARALLEL END
49
50 return
51 end

Example 7-2:  Program illustrating the bit-wise exact form of the REDUCE directive. 

The modified REDUCE syntax can be see on lines 33 and 40.  The syntax requires a 
BEGIN and END directive.  SMS replaces the calculations between the REDUCE 
BEGIN and END with code that gathers each process's piece of y into a globally-sized 
(replicated) variable and then sums the result in the correct order.  Conceptually, the 
generated parallel code would be:   

call GATHER(y, y_global)
ysum = 0.0
do j = 1, jm

do i = 1, im
ysum = ysum + y_global(i,j)

end do
end do

The "gather" operation is done in the same way as TRANSFER was used to gather 
variables as discussed in Section 6.1.  Since the gather operation requires communicating 
the entire contents of y to all processes, this form of global sum is significantly less 
efficient than the "standard" form of reduction.  In that case, only the process-local scalar 
sums are communicated to all the processes.   
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The bit-wise exact form of the REDUCE directive will only produce exact sums if an 
environment variable called SMS_BITWISE is set to the value EXACT.  Running 
EXACT_REDUCE in a c-shell environment might look as follows:   

>> setenv SMS_BITWISE EXACT
>> smsRun –np 2 exact_reduce
SMS: BITWISE EXACT reductions will be used when requested.
Global values

ysum = -2464.28418

Notice that the message printed by SMS regarding reductions now indicates that bit-wise 
exact reductions will be used.   

If SMS_BITWISE is NOT set to EXACT then the effect of the REDUCE directive is the 
same as in the "standard" reduction; each process computes a local sum of y and the 
resulting scalars are summed across the processes.   

>> setenv SMS_BITWISE INEXACT
>> smsRun –np 2 exact_reduce
SMS: Standard reductions will be used.
Global values

ysum = -2464.28540

In summary, the "bit-wise exact" form of global summation is valuable for testing 
purposes, particularly for non-linear systems.  Its use is required for correct operation of 
the COMPARE_VAR debugging feature (see Section 15.1).  However, for long model 
runs, when optimal performance is important, the "standard" form of REDUCE will 
likely be more appropriate because it is much faster.  The programmer can use the bit-
wise exact form of REDUCE in the code and then decide at run-time, with the 
SMS_BITWISE environment variable, which reduction to use.   
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8 Incremental Parallelization Using SERIAL 

The SERIAL directive is useful when other SMS directives cannot be easily applied to a 
piece of serial code or when efficient performance is not critical.  One example is 
initialization.  For long model runs, the effects of inefficient code during initialization 
become negligible.  Diagnostic print messages are another case.  If the user can turn off 
diagnostic messages when high performance is needed then the presence of inefficient 
parallel code that generates these messages does not pose a problem.  Another use of 
SERIAL is for incremental parallelization of a large code.  Using this technique, SERIAL 
directives are inserted around large sections of code.  The directives are then removed 
one-by-one as each section is parallelized.  This simplifies testing and debugging because 
each parallel code section can be tested and debugged separately.   

8.1 Improving the Performance of SERIAL 

Any code segment enclosed by SERIAL BEGIN and SERIAL END directives is called a 
“serial region”.  When SMS encounters a serial region, it automatically gathers all 
decomposed arrays on a single process, executes the enclosed code segment on the 
process, and scatters all decomposed arrays back to all processes (see Figure 8-1).  In 
addition, all non-decomposed variables are broadcast to all the processes.  By default, 
SMS gathers/scatters all decomposed variables and broadcasts all non-decomposed 
variables referenced in the serial region.  These communications cause the code to run 
even more slowly than the original serial code.  To improve performance, the user can 
specify variables to be scattered, gathered, or broadcast using keywords “IN”, “OUT”, or 
“INOUT” (when both operations are required).  Also, when no communication is 
required, the “IGNORE” keyword can be used to suppress communication.   
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SERIAL CODE...

  “scatter”

  “gather” 

 
Figure 8-1:  Gather and scatter of decomposed data at the beginning and end of a serial region.   

In Example 8-1, x and y are decomposed while z is not.  The subroutine calls at lines 
39-40 read in x and z using C language routines (the C code is not shown).  Since C 
routines cannot be handled by SMS, the SERIAL directive is used to generate code that 
gathers x and y into global variables.  A single process then executes the code at lines 
39-41.  Finally, the generated code scatters x and y and broadcasts the value of z.  
Scalar variables im and jm are not broadcast since the default is set to “IGNORE”.  
When high performance is desired, the user can avoid this poorly performing code 
segment by setting ENABLE_DIAGS to .FALSE..   

[Include file: serial.inc]
1 integer im,jm
2 common /sizes_com/ im,jm
3 CSMS$DECLARE_DECOMP(DECOMP_IJ, 2)

[Source file: serial1.f]
1 program SERIAL
2
3 include 'serial.inc'
4
5 integer i
6 integer j
7
8 im = 5
9 jm = 4

10
11 CSMS$CREATE_DECOMP(DECOMP_IJ, <im,jm>, <0,0>)
12
13 call DO_IT
14
15 end
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16
17 subroutine DO_IT
18 include 'serial.inc'
19
20 CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
21 real x(im,jm)
22 real y(im,jm)
23 CSMS$DISTRIBUTE END
24 real z
25 logical ENABLE_DIAGS
26 ENABLE_DIAGS = .true.
27
28 open(10, file='yin', form='unformatted')
29 read(10) y
30 close(10)
31
32 C Some parallel computations
33 C .
34 C .
35 C .
36
37 if (ENABLE_DIAGS) then
38 CSMS$SERIAL(<x, y, INOUT>, <z, OUT> : DEFAULT=IGNORE) BEGIN
39 call READ_2D_ARRAY_USING_C(x, im, jm)
40 call READ_SCALAR_USING_C(z)
41 print *, 'y(2,2), z ', y(2,2), z
42 CSMS$SERIAL END
43 end if
44 C More parallel calculations
45 .
46 .
47 return
48 end

Example 8-1:  A sample program showing how the SERIAL directive can be used to generate correct 
parallel code in a simple fashion when other SMS directives will not suffice.   

8.2 Limitations of SERIAL 

Some care must be taken when using the SERIAL directive.  First, SMS does not perform 
inter-procedural analysis so calling a routine that uses common block variables from 
within a serial region can produce erroneous results.  Suppose we insert the following 
code after line 38 in Example 8-1:   

call sub1

Further suppose sub1 looks like this:   

subroutine sub1
real xc
common /com1/ xc
xc = 2.0
return
end

SMS has no way of knowing that xc has to be broadcast before the end of the serial 
region because it does no inter-procedural analysis.  A solution here would be to include 
/com1/ in subroutine DO_IT and specify xc as an “OUT” variable in the directive:   
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CSMS$SERIAL(<x, y, INOUT>, <xc, z, OUT> : DEFAULT=IGNORE) BEGIN

Second, care must be taken when constants are passed into subroutines that use SERIAL.  
In Example 8-2, the constant 2 is passed to subroutine DO_IT.  Since DO_IT calls a C 
routine that uses dummy argument n, a SERIAL directive would normally be required to 
handle this.  However the SERIAL directive generates a broadcast of dummy argument 
n, which will attempt to modify its value.  Since n is the constant 2, the result will be 
unpredictable (with luck, a core dump).  This problem can be corrected by using the 
“IGNORE” keyword to ensure that the SERIAL directive will not attempt to broadcast n.   

1 program SERIAL
2
3 include 'serial.inc'
4
5 integer i
6 integer j
7
8 im = 5
9 jm = 4

10
11 CSMS$CREATE_DECOMP(DECOMP_IJ, <im,jm>, <0,0>)
12
13 call DO_IT(2)
14
15 end
16
17 subroutine DO_IT(n)
18
19 integer n
20
21 CSMS$SERIAL BEGIN
22 call c_routine(n)
23 CSMS$SERIAL END
24
25 return
26 end

Example 8-2:  Code where use of the SERIAL directive generates parallel code that fails to run 
properly. 

Care must also be taken when using SERIAL in combination with statements that alter 
execution sequence (such as IF, GOTO, etc.).  To avoid problems, program execution 
should only enter a serial region from the statement immediately before the SERIAL 
BEGIN directive.  Similarly, program execution should only exit a serial region from the 
statement immediately before the SERIAL END directive.   

Finally, like EXCHANGE, SERIAL automatically implements the process 
synchronization required for the parallel code to produce correct results.  A side effect of 
this synchronization is that the SERIAL directive cannot be used inside a decomposed 
loop because the number of iterations may not be the same on every process, causing 
deadlock.   
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9 Periodic Boundary Conditions 

By default, SMS assumes that decomposed dimensions have non-periodic boundary 
conditions.  However, global FDA models have periodic boundary conditions in the east-
west direction.  Also, idealized test cases often use periodic boundary conditions in more 
than one dimension (such as in both horizontal dimensions).  SMS supports periodicity in 
any decomposed dimension.   

9.1 Using CREATE_DECOMP to Specify Periodic Boundaries 

SMS allows the user to specify periodic boundary conditions using the optional 
PERIODIC keyword in the CREATE_DECOMP directive as shown in Example 9-1.  
This option causes exchanges to fill in the halo regions on the outer model boundaries as 
shown in Figure 9-1.  

1 program laplace_periodic
2 implicit none
3
4 integer im
5 parameter(im=100)
6 integer jm
7 parameter(jm=99)
8
9 CSMS$DECLARE_DECOMP(dh : <0,0>)

10
11 real global_error
12 real tolerance
13 parameter (tolerance = 0.002)
14 integer iter
15 integer i
16 integer j
17
18 CSMS$DISTRIBUTE(dh, 1, 2) BEGIN
19 real, allocatable :: f(:,:)
20 real, allocatable :: df(:,:)
21 CSMS$DISTRIBUTE END
22
23
24 CSMS$CREATE_DECOMP(dh, <im+2, jm+2>, <2,2> : <PERIODIC, PERIODIC>)
25
26 allocate(f (0:im+1, 0:jm+1))
27 allocate(df(0:im+1, 0:jm+1))
28
29 CSMS$PARALLEL(dh, <i>, <j>) BEGIN
30
31 CSMS$SERIAL BEGIN
32 do j = 0, jm+1
33 do i = 0, im + 1
34 f(i,j) = sqrt(real(i+j)) - sqrt(real(i)) - sqrt(real(j))
35 end do
36 end do
37 CSMS$SERIAL END
38
39 iter = 0
40 global_error = 1.0
41
42 do while ((global_error .gt. tolerance) .and. (iter .lt. 1000))
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43 iter = iter + 1
44
45 global_error = 0.0
46
47 CSMS$EXCHANGE(f)

48 CSMS$GLOBAL_INDEX(1) BEGIN
49 do j = 1, jm
50 f(0 ,j) = f(im, j)
51 f(im+1,j) = f(1 , j)
52 end do
53 CSMS$GLOBAL_INDEX END
54
55 CSMS$GLOBAL_INDEX(2) BEGIN
56 do i = 1, im
57 f(i,0 ) = f(i, jm)
58 f(i,jm+1) = f(i, 1 )
59 end do
60 CSMS$GLOBAL_INDEX END
61
62 do j = 1, jm
63 do i = 1, im
64 df(i,j) = 0.25*(f(i-1,j) + f(i+1,j) + f(i,j-1) + f(i,j+1))
65 & - f(i,j)
66 end do
67 end do
68
69 do j = 1, jm
70 do i = 1, im
71 if (global_error .lt. abs(df(i,j))) then
72 global_error = abs(df(i,j))
73
74 end if
75 end do
76 end do
77
78
79 do j = 1, jm
80 do i = 1, im
81 f(i,j) = f(i,j) + df(i,j)
82 end do
83 end do
84
85 CSMS$REDUCE(global_error, MAX)
86
87 end do
88
89 print *, 'Ended with iter : ', iter
90 print *, 'Global_error: ', global_error
91
92 CSMS$PARALLEL END
93
94 end

Example 9-1:  Version of the Laplace program with periodic boundary conditions. 
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43 7 6 7 85 9 10 118 
Local Indices 

433 2 1 0 10 7 6 75 9 10 08 
Global Indices 

3 2 1 0 -2 4 2 9 6-1 12

9 4 2 8 9 16

 
Figure 9-1:  Exchanges in a periodic model.   

With the model boundary halo regions properly updated, the periodic boundary 
conditions shown in lines 48-60 will produce the correct answer.  Notice that even in the 
dynamic memory case, the local and global indices are not identical as shown in Figure 
9-1.  With im  set to 9, local index –1 on process P1 corresponds to global index im+1 
(10).  Local index 11 on process P3 corresponds to global index 0.  However, explicit 
index translation using TO_LOCAL and TO_GLOBAL is still not needed in a periodic 
code that uses dynamic memory because index differences only occur at the periodic 
boundaries where GLOBAL_INDEX will automatically handle any needed translations.   

It is also possible to mix periodic and non-periodic boundaries by using the 
NONPERIODIC keyword in the CREATE_DECOMP directive.  In the example below, 
the first dimension of decomposition dh will be periodic and the second dimension will 
be non-periodic.    

CSMS$CREATE_DECOMP(dh, <im+2, jm+2>, <2,2> : <PERIODIC, NONPERIODIC>)
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9.2 Periodic Boundary Optimization  

Notice in Example 9-1 that two halo points are specified even though the maximum 
stencil size is 1.  The extra halo point is needed for the periodic boundary condition due 
to the mapping between boundary points and halo points.  For example, in the boundary 
condition statement: 

f(i,0) = f(i, jm) 

the interior point im maps to the first halo point on the left-hand-size (local index –2).  
However, in this example, no interior points map to halo point –1.  Thus, it is possible to 
eliminate the second halo point.  To do this, the user can optimize the handling of 
periodic boundary conditions via the following syntax: 

CSMS$CREATE_DECOMP(dh, <im+2, jm+2>, <2,2> :
CSMS$> <PERIODIC(1)(IM),PERIODIC(1)(JM)>)

This variation indicates that, for the 1st decomposed dimension, the lowest global index 
appearing on the right-hand-side of any boundary condition is 1 (Example 9-1: line 50).  
The highest such point is im (line 51).  Analogously, the lowest and highest indices for 
the 2nd decomposed dimension are 1 and jm, respectively (lines 57 & 58).  Notice that 
the halo size in the directive is now 1 instead of 2.  This optimization decreases the 
communication bandwidth for the periodic boundary halo updates and improves cache re-
use overall in the model because of the reduced number of halo points required. 
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10 Mitigating Static Load Imbalances 

Ideally, each process will have exactly the same amount of work to do.  In practice, most 
models have computations that vary spatially so some processes may have more work 
than others.  This is commonly known as load imbalance.  Load imbalances slow down a 
parallel program because processes with less work are forced to wait for processes with 
more work to catch up.  Load imbalances can be fixed (static) or variable (dynamic) in 
time.  SMS provides tools to reduce static load imbalances.  A future SMS release will 
provide methods to mitigate dynamic load imbalances.   

Several types of static load imbalances are found in weather and ocean models.  One type 
is due to the fact that edge processes may have boundary condition calculations while 
other processes do not.  SMS allows local regions with different sizes to be specified for 
each process at run time.  By giving more points to interior processes, the imbalance can 
be mitigated.  This approach can also be used to reduce load imbalance in ocean models 
where computations are skipped for land grid points (see Section 10.1).   

Global atmospheric models can have longitudinal imbalances due to differences in the 
computations required for day/night points and latitudinal imbalances stemming from 
summer/winter (or tropical/temperate) computational differences.  SMS provides means 
to mitigate both of these effects using a technique called index scrambling.  This 
technique is described in Section 10.2.   

10.1 Controlling Process Layout 

By default, SMS uses a pre-determined set of rules to decide how data points are assigned 
to each process and how many processes are allocated to each decomposed dimension.  
Roughly speaking, the data points are distributed evenly among the processes along a 
given decomposed dimension as seen in Figure 2-2 and Figure 2-3.  In addition, 
processes are divided among the decomposed dimensions so as to minimize the amount 
of data moved during an EXCHANGE operation. 

SMS also provides a mechanism for the user to specify the assignment of data points 
using a process configuration file in the form of a Fortran namelist.  For a given 
decomposition, the user defines how many processes are assigned to each decomposed 
dimension.  SMS will then choose how many data points are assigned to each process as 
before.  The user can also optionally define how many data points are assigned to each 
process.  Example 10-1 shows how process configuration works.   

[file config.f]
1 program CONFIGURE
2 integer, parameter :: im = 12
3 integer, parameter :: jm = 12
4 CSMS$DECLARE_DECOMP(dh1, 2)
5 CSMS$DECLARE_DECOMP(dh2, 2)
6 CSMS$CREATE_DECOMP(dh1, <im,jm>, <0,0>)
7 CSMS$CREATE_DECOMP(dh2, <im,jm>, <0,0>)
8 CSMS$DISTRIBUTE(dh1, 1, 2) begin



86 

9 real, allocatable :: a1(:,:)
8 CSMS$DISTRIBUTE end

10
11 CSMS$DISTRIBUTE(dh2, 1, 2) begin
12 real, allocatable :: a2(:,:)
13 CSMS$DISTRIBUTE end

.

.

.

[file my_config]
&decomp
decomp1_name = ’dh1’,
decomp1_nps = 2 2,
decomp2_name = ’dh2’,
decomp2_nps = 4 1,
decomp2_ddim1_sizes = 2 4 4 2/

Example 10-1:  Sample program and associated configuration file illustrating how the user can tell 
SMS how to distribute the data among the processes.   

The program in the example defines two decompositions.  The configuration file, 
my_config, specifies how the data are distributed among the processes.  In this case, it 
indicates that two processes will be assigned to each decomposed dimension of 
decomposition dh1.  However, the user leaves it up to SMS to determine how many data 
points are assigned to each process.  Figure 10-1 shows the memory layout of a1.   

For dh2, the user specifies that the 4 processes will be assigned to the first decomposed 
dimension.  The user further specifies how many points are assigned to each process.  
Figure 10-2 shows the memory layout of a2.   

The user tells SMS to use configuration file my_config as follows: 

>> smsRun –cf my_config my_program
SMS: For processor layout of decomposition dh1, using config file :
my_config
SMS: For processor layout of decomposition dh2, using config file :
my_config

Notice that the smsRun command does not specify how many processes are requested.  
SMS figures out how many are needed from the configuration file.  Also notice the 
diagnostic message from SMS that describes which decompositions are defined in the 
configuration file.  For brevity, this message will not be shown again.   
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Figure 10-1:  Memory layout of array a1 in program CONFIGURE.   
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Figure 10-2:  Memory layout of array a2 in program CONFIGURE.   
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SMS also supports decompositions in which the number of local data points on each 
process is allowed to vary in two decomposed dimensions.  Such “irregular” 
decompositions may be arbitrarily complex so long as each process has a single 
rectangular region and every point is owned by one and only one process.  The code 
fragment below shows a configuration file for an irregular decomposition.  This 
decomposition is illustrated in Figure 10-3.  Irregular decompositions are useful for 
reducing complex static load imbalances such as those found in an ocean model where no 
computations occur at land points.   

&decomp
decomp1_name = ’dh_irregular’,
decomp1_nps = 7,
decomp1_ddim1_proc_starts = 1 5 9 1 5 1 5,
decomp1_ddim1_proc_ends = 4 8 10 4 8 4 10,
decomp1_ddim2_proc_starts = 1 1 1 5 4 7 8,
decomp1_ddim2_proc_ends = 4 3 7 6 7 10 10/
 

i 
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Figure 10-3:  An “irregular” decomposition.   

10.2 Index Scrambling 

Index scrambling, accessible via an option to the CREATE_DECOMP directive, moves 
adjacent row/column pairs to other processes.  Figure 10-4 shows how the data might be 
distributed following longitudinal scrambling.  Due to the complexity of these 
redistributions, they are not permitted for decompositions that have adjacent 
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dependencies (because the communications generated by EXCHANGE directives would 
perform poorly).   

 
Figure 10-4:  Longitude scrambling is used to reduce load imbalances due to computational 
differences stemming from day/night cycles in a global weather model.  In this case, the model is run 
using 2 processes.  One process has the brightly colored segments; the other has the shaded segments.  
The effect is to give each process half of the day points and half of the night points.   

To use index scrambling, a fourth argument is added to the CREATE_DECOMP as 
shown in the code fragments below:   

CSMS$CREATE_DECOMP(DECOMP_J, <jm>, <0> : <SCRAMBLE_LAT_STRATEGY>)

CSMS$CREATE_DECOMP(DECOMP_I, <im>, <0> : <SCRAMBLE_LON_STRATEGY>)

In the first case, argument <SCRAMBLE_LAT_STRATEGY> indicates that the first 
decomposed dimension of DECOMP_J will be scrambled using a method appropriate for 
balancing load among latitudes in a global model.  In the second case, argument 
<SCRAMBLE_LON_STRATEGY> indicates that the first decomposed dimension of 
DECOMP_I will be scrambled using a method appropriate for balancing load among 
longitudes in a global model.  No other code changes are required to use the scrambling 
feature.  For this reason, it is convenient to add index scrambling as a performance 
optimization once debugging of the non-scrambled parallel code is complete.   
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11 Nesting and Coupling:  Transfer-Interpolation 

In some programs it is necessary to interpolate data from one grid onto another grid.  This 
kind of “inter-grid interpolation” occurs, for example, in nested atmospheric codes that 
use mesh refinement techniques to improve resolution in critical areas.  Data from a 
coarse “parent” grid may be used to compute boundaries of a fine “child” grid (see Figure 
11-1).  Conversely, data from a fine “child” grid may be used to compute overlapping 
values in its coarse “parent” (see Figure 11-2).  Also, it may be necessary to reconcile 
overlapping portions of two “sibling” grids (see Figure 11-3).  In addition, inter-grid 
interpolation is used to couple models that are based on different grids (see Figure 11-4).  
A common example is coupling of atmospheric and oceanic models.   

 

 
Figure 11-1:  Computing boundary points in a high-resolution “child” grid from points in a low-
resolution “parent” grid. 

In a parallel program, inter-grid interpolations often require inter-process communication 
that can be quite complex.  SMS encapsulates this complexity by combining both 
interpolation and communication into a single “transfer-interpolation” operation.  SMS 
transfer-interpolation can be used to parallelize any inter-grid interpolation that uses 
weighted sums of values in a source grid to compute values in a destination grid.   
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Figure 11-2:  Computing overlapping points in a low-resolution “parent” grid from points in a high-
resolution “child” grid. 

 

 
Figure 11-3:  Reconciling overlapping points in “sibling” grids. 
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Figure 11-4:  Coupling different grids. 

11.1 Using SET_TRANSFER_INTERPOLATE to Define Interpolations 

The SET_TRANSFER_INTERPOLATE directive is used to specify any inter-grid 
interpolation scheme that can be expressed as weighted sums.  Before 
SET_TRANSFER_INTERPOLATE can be used, the serial code must be transformed so 
that source grid coordinates, destination grid coordinates, and weights are each stored in 
arrays.  Code in this form will be referred to as “stencil-oriented”.   

11.1.1 Transforming Serial Code to “Stencil-Oriented” Form 

Example 11-1 shows a simple stencil-oriented serial code fragment that is used to 
compute elements of fine-grid array X_FINE from weighted sums of elements of coarse-
grid array X_COARSE.  In this code, NUM_FINE_POINTS is the number of elements to 
be computed in array X_FINE.  MAX_STENCIL_POINTS is the maximum number of 
elements from X_COARSE that will be used to compute any element in X_FINE by 
weighted sum.  The coordinates of each element of X_FINE to be computed are stored in 
array fine_indices.  The coordinates of each element of X_COARSE that are used to 
compute each element of X_FINE are stored in array stencil_indices.  The 
corresponding weights are stored in array stencil_weights.  (Initializations of 
fine_indices , stencil_indices , and stencil_weights are not shown).  
The actual weighted-sum computations are performed in the loop beginning at line 13.  
Figure 11-5 illustrates details of the weighted sum used to compute one of the elements 
of X_FINE. 

1 real X_COARSE(imc,jmc)
2 real X_FINE(imf,jmf)
3
4 integer fine_indices(2,NUM_FINE_POINTS)
5 integer stencil_indices(2,MAX_STENCIL_POINTS,
6 & NUM_FINE_POINTS)
7 real stencil_weights(MAX_STENCIL_POINTS,
8 & NUM_FINE_POINTS)
9
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10 ...Initialize fine_indices, stencil_indices, and stencil_weights...
11
12 C NOTE “stencil-oriented” form of serial interpolation code
13 do ifp = 1,NUM_FINE_POINTS
14 i = fine_indices(1,ifp)
15 j = fine_indices(2,ifp)
16 X_FINE(i,j) = 0.0
17 do icp = 1,MAX_STENCIL_POINTS
18 X_FINE(i,j) = X_FINE(i,j) +
19 & (stencil_weights(icp,ifp) *
20 & X_COARSE(stencil_indices(1,icp,ifp),
21 & stencil_indices(2,icp,ifp)))
22 enddo
23 enddo

Example 11-1:  Serial inter-grid interpolation code in “stencil-oriented” form.   

 
 
 
 
 
 
 
 
 

X_FINE(2,4)=W1*X_COARSE(3,4) + W2*X_COARSE(4,4) +
W3*X_COARSE(3,5) + W4*X_COARSE(4,5)

MAX_STENCIL_POINTS=4

j

i

stencil_indices(:,1,ifp)=(/3,4/)

stencil_indices(:,2,ifp)=(/4,4/)

stencil_indices(:,3,ifp)=(/3,5/)

stencil_indices(:,4,ifp)=(/4,5/)

fine_indices(:,ifp)=(/2,4/)

X_COARSE

X_FINE

stencil_weights(:, ifp)=(/W1,W2,W3,W4/)

NUM_FINE_POINTS=48

 
Figure 11-5:  Detail of coarse-to-fine interpolation computations.  Integer ifp is the loop index used 
on line 13 of Example 11-1.   

11.1.2 Defining an Interpolation 

Once the serial code is in “stencil-oriented” form, the 
SET_TRANSFER_INTERPOLATION directive can be used to define inter-grid 
interpolations.  Example 11-2 shows how this is done for the inter-grid interpolation 
introduced in Example 11-1.  Arrays X_COARSE and X_FINE are distributed using 
decompositions dhCoarse and dhFine, respectively.  The 
SET_TRANSFER_INTERPOLATION directive begins on line 17.   
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1 CSMS$DISTRIBUTE(dhCoarse, <imc>, <jmc>) BEGIN
2 real X_COARSE(imc,jmc)
3 CSMS$DISTRIBUTE END
4 CSMS$DISTRIBUTE(dhFine, <imf>, <jmf>) BEGIN
5 real X_FINE(imf,jmf)
6 CSMS$DISTRIBUTE END
7
8 integer fine_indices(2,NUM_FINE_POINTS)
9 integer stencil_indices(2,MAX_STENCIL_POINTS,

10 & NUM_FINE_POINTS)
11 real stencil_weights(MAX_STENCIL_POINTS,
12 & NUM_FINE_POINTS)
13
14 CSMS$PARALLEL(dhFine, <i>, <j>) BEGIN
15 ...Initialize fine_indices, stencil_indices, and stencil_weights...
16
17 CSMS$SET_TRANSFER_INTERPOLATION( dhCoarse, dhFine, 2,
18 CSMS$> NUM_FINE_POINTS, fine_indices, MAX_STENCIL_POINTS,
19 CSMS$> stencil_indices, stencil_weights, INTERP_C_F)
20
21 CSMS$TRANSFER( <X_COARSE, X_FINE : INTERP_C_F> ) BEGIN
22 C NOTE “stencil-oriented” form of serial interpolation code
23 do ifp = 1,NUM_FINE_POINTS
24 i = fine_indices(1,ifp)
25 j = fine_indices(2,ifp)
26 X_FINE(i,j) = 0.0
27 do icp = 1,MAX_STENCIL_POINTS
28 X_FINE(i,j) = X_FINE(i,j) +
29 & (stencil_weights(icp,ifp) *
30 & X_COARSE(stencil_indices(1,icp,ifp),
31 & stencil_indices(2,icp,ifp)))
32 enddo
33 enddo
34 CSMS$TRANSFER END

Example 11-2:  The SET_TRANSFER_INTERPOLATION directive is used to define the inter-grid 
interpolation introduced in Example 11-1.  The TRANSFER directive performs the computations 
and inter-process communications required to interpolate between grids.   

The first two arguments in the SET_TRANSFER_INTERPOLATION directive are the 
names of the decompositions used by the source and destination arrays.  The third 
argument is the rank of the interpolation, which cannot be larger than the rank of the 
source or destination arrays.  The fourth argument is the number of elements in the 
destination array that will be computed during interpolation and the fifth argument is a 
list of coordinates for each element.  The maximum number of elements from the source 
array that will be used to compute any element of the destination array is indicated by the 
sixth argument.  The seventh argument is an array of lists of coordinates of elements from 
the source array that will be used to compute each element of the destination array.  The 
weights used to interpolate each element of the destination array are indicated by the 
eighth argument.  Finally, the last argument is a user-defined name for the interpolation.  
This name is used again in the TRANSFER directive to select the interpolation scheme.  
Finally, the code that initializes fine_indices, stencil_indices, and 
stencil_weights must appear inside a PARALLEL directive (see line14 of 
Example 11-2).   

Note that any array dimension may be interpolated whether or not it is decomposed.  The 
independence of interpolated dimensions and decomposed dimensions allows full 
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flexibility to support any weighted-sum interpolation scheme with any decomposition.  
However, to minimize inter-process communication, interpolation of non-decomposed 
dimensions should be decoupled and handled separately whenever possible (see Example 
11-4).   

11.2 Using TRANSFER to Interpolate Between Grids 

The TRANSFER directive has special syntax for inter-grid interpolations as shown on 
line 21 of Example 11-2.  The source and destination arrays (X_COARSE and X_FINE) 
are enclosed in angle brackets (see Section 6).  In addition, a third argument 
(INTERP_C_F) references the name of the interpolation, defined by the 
SET_TRANSFER_INTERPOLATION directive (line 19 of Example 11-2).  Note that 
the serial code enclosed between the TRANSFER “BEGIN” and “END” must include all 
interpolation computations to ensure that the serial code works correctly.  During source 
code translation, code between the “BEGIN” and “END” is replaced with its parallel 
equivalent.   

Transfer-interpolation operations are aggregated to reduce latency in the same way 
aggregation is done for standard transfers.  Note that aggregation of multiple 
interpolations is done even if the source or destination arrays are not decomposed in the 
same way or if different interpolations are used.  Aggregation of transfer-interpolation 
operations is illustrated in Example 11-3 for a simple case where arrays Y_COARSE and 
Y_FINE are decomposed like X_COARSE and X_FINE.  Aggregation is achieved by 
combining the transfer-interpolations into a single TRANSFER directive (lines 1 and 2).   

1 CSMS$TRANSFER( <X_COARSE, X_FINE : INTERP_C_F>,
2 CSMS$> <Y_COARSE, Y_FINE : INTERP_C_F>) BEGIN
3 do ifp = 1,NUM_FINE_POINTS
4 i = fine_indices(1,ifp)
5 j = fine_indices(2,ifp)
6 X_FINE(i,j) = 0.0
7 Y_FINE(i,j) = 0.0
8 do icp = 1,MAX_STENCIL_POINTS
9 X_FINE(i,j) = X_FINE(i,j) +

10 & (stencil_weights(icp,ifp) *
11 & X_COARSE(stencil_indices(1,icp,ifp),
12 & stencil_indices(2,icp,ifp)))
13 Y_FINE(i,j) = Y_FINE(i,j) +
14 & (stencil_weights(icp,ifp) *
15 & Y_COARSE(stencil_indices(1,icp,ifp),
16 & stencil_indices(2,icp,ifp)))
17 enddo
18 enddo
19 CSMS$TRANSFER END

Example 11-3:  This form of the TRANSFER performs inter-grid interpolations to compute elements 
of both X_FINE and Y_FINE.  When a single TRANSFER directive is used for multiple 
interpolations, messages are aggregated.  This will improve performance on some machines by 
reducing message latency.  Note that the serial code enclosed by the TRANSFER directive must 
perform interpolation computations for all destination arrays.   

In some circumstances, it is convenient to use an interpolation for computations on arrays 
with higher rank.  For example, suppose that arrays X_COARSE and X_FINE from 
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Example 11-2 each had a third, non-decomposed dimension with size km.  Furthermore, 
suppose that interpolation between X_COARSE and X_FINE was independent of the new 
third dimension.  The same interpolation, INTERP_C_F could still be used as shown in 
Example 11-4.  The syntax INTERP_C_F(1,2) in the TRANSFER directive on line 1 
indicates that the first two dimensions of the arrays correspond to the first two 
dimensions of the interpolation.  SMS will automatically replicate interpolation 
computations in the third array dimension.   

1 CSMS$TRANSFER( <X_COARSE, X_FINE : INTERP_C_F(1,2)> ) BEGIN
2 do k = 1,km
3 do ifp = 1,NUM_FINE_POINTS
4 i = fine_indices(1,ifp)
5 j = fine_indices(2,ifp)
6 X_FINE(i,j,k) = 0.0
7 do icp = 1,MAX_STENCIL_POINTS
8 X_FINE(i,j,k) = X_FINE(i,j,k) +
9 & (stencil_weights(icp,ifp) *

10 & X_COARSE(stencil_indices(1,icp,ifp),
11 & stencil_indices(2,icp,ifp),k))
12 enddo
13 enddo
14 enddo
15 CSMS$TRANSFER END

Example 11-4:  Interpolations may be used for arrays with higher rank.  Here, interpolation of 3D 
array X_FINE from 3D array X_COARSE is done using 2D decomposition INTERP_C_F (defined on 
lines 14-16 of Example 11-2).   

11.3 Using SET_NEST_LEVEL to Switch Between Grids 

In the examples shown so far, the source and destination decompositions have had 
different names (dhCoarse and dhFine in Example 11-2).  However, it is often 
desirable to define a single decomposition name and use it to describe both the source 
and destination decompositions.  In Example 11-5, subroutine SOLVE is called twice, 
once with X_COARSE (line 29) and once with X_FINE (line 36).  However, X_COARSE 
and X_FINE are decomposed differently.  To avoid passing SMS-specific decomposition 
information through the interface of subroutine SOLVE (which would unnecessarily 
complicate the serial code), SMS allows a single decomposition name to refer to more 
than one decomposition.  Individually, these component decompositions are called 
“nests”.   

In Example 11-5, decomposition dh is declared to have two nests by using the syntax 
“dh(2)” in the DECLARE_DECOMP directive (line 4).  The nests are then referred to 
individually using “dh(1)” (coarse nest) and “dh(2)” (fine nest) on lines 10, 11, 21, 
and 24.  SMS directives inside subroutine SOLVE do not explicitly reference a specific 
nest (dh(1) or dh(2)).  Instead, the nest level is selected before each call to SOLVE by 
SET_NEST_LEVEL directives on lines 28 and 35.  Unlike most other SMS directives, 
the effects of the SET_NEST_LEVEL directive carry over into called subroutines.  The 
selected nest will remain selected until another SET_NEST_LEVEL directive is 
encountered.   

1 [include file params.inc]
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2 integer imc,jmc,imf,jmf
3 common /sizes_com/ imc,jmc,imf,jmf
4 CSMS$DECLARE_DECOMP(dh(2), 2)
5
6
7 [main program source file]
8 C ...
9 include 'params.inc'

10 CSMS$CREATE_DECOMP(dh(1), <imc, jmc>, <3,3>)
11 CSMS$CREATE_DECOMP(dh(2), <imf, jmf>, <3,3>)
12 C ...
13 CSMS$SET_TRANSFER_INTERPOLATION( dh(1), dh(2), 2,
14 CSMS$> NUM_FINE_POINTS, fine_indices, MAX_STENCIL_POINTS,
15 CSMS$> stencil_indices, stencil_weights, INTERP_C_F)
16
17
18 [subroutine source file]
19 C ...
20 include 'params.inc'
21 CSMS$DISTRIBUTE(dh(1), <imc>, <jmc>) BEGIN
22 real X_COARSE(imc,jmc)
23 CSMS$DISTRIBUTE END
24 CSMS$DISTRIBUTE(dh(2), <imf>, <jmf>) BEGIN
25 real X_FINE(imf,jmf)
26 CSMS$DISTRIBUTE END
27
28 CSMS$SET_NEST_LEVEL( dh, 1 )
29 CALL SOLVE(X_COARSE,imc,jmc)
30
31 CSMS$TRANSFER( <X_COARSE, X_FINE : INTERP_C_F> ) BEGIN
32 C ...
33 CSMS$TRANSFER END
34
35 CSMS$SET_NEST_LEVEL( dh, 2 )
36 CALL SOLVE(X_FINE,imf,jmf)
37
38
39 [another subroutine source file]
40 SUBROUTINE SOLVE(X,im,jm)
41 include 'params.inc'
42 CSMS$DISTRIBUTE(dh, <im>, <jm>) BEGIN
43 real X(im,jm)
44 CSMS$DISTRIBUTE END
45 integer i,j
46 CSMS$PARALLEL(dh, <i>, <j>) BEGIN
47 C ...
48 CSMS$PARALLEL END
49 END

Example 11-5:  Subroutine SOLVE must be called with either X_COARSE or X_FINE as the first 
argument.  Since these two arrays are decomposed differently, the best way to do this is to create a 
single decomposition with two “nests”, dh(2).  The SET_NEST_LEVEL directive selects which nest is 
used.   



98 

12 I/O 

A powerful feature of SMS is its ability to support most types of I/O without directives.  
The fact that communication patterns for I/O of decomposed and non-decomposed arrays 
differ is hidden from the programmer.  SMS automatically generates the communication 
needed to read or write data to or from disk in the same sequence as the serial code would 
have done it regardless of the number processes used.  Unformatted I/O is discussed in 
Section 12.1 while formatted I/O is covered in Section 12.2.  Printing in a parallel 
program often requires additional decisions from the programmer.  SMS allows the 
programmer to make these decisions by providing several print modes that are introduced 
in Section 12.2.2.  Finally, Section 12.3 discusses methods for improving I/O 
performance.   

12.1 Unformatted I/O 

Figure 12-1 illustrates dependencies for read and write of a simple one-dimensional 
decomposed array.  During a read, data from a single file must be parceled out to each 
process.  This type of communication pattern is called "scatter".  During a write, data 
from each process must be combined in the “proper order” and written to disk.  This type 
of communication pattern is a different form of "gather" than the form used for 
TRANSFER and bit-wise exact REDUCE.  Instead of gathering data into a global 
variable that is replicated in memory on all processes, data is gathered into a single file 
on disk.  "Proper order" means the data must be read from or written to disk in the same 
sequence that the serial code uses.  Though it appears quite simple in Figure 12-1, the 
data reorganization required to match serial ordering in files can be quite complex, 
especially for two-dimensional decompositions or when the decomposed arrays have halo 
regions (Figure 12-2).  Additionally, when variables being input have halo regions 
associated with them, these regions are automatically updated by SMS.   
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Figure 12-1:  Conceptual schematic of the input and output of a decomposed array.  On input, one 
process reads the global data from disk.  The appropriate sections of the global array are then 
“scattered” to each process.  On output, the decomposed data are gathered into a global array and 
then written to disk.  The underlying implementation may use a more efficient scheme on some 
machines.   
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Figure 12-2:  Conceptual schematic of the re-ordering required to write and read two-dimensionally 
decomposed data to disk in the same order as the serial code would write it.  Special care has to be 
taken to write the only the interior of each process-local domain and not the halo data.  The halo 
regions are filled during the read operations.   

Figure 12-3 illustrates dependencies for read and write of a non-decomposed variable.  
During a read, a copy of data from a single file must be sent to each process.  This type of 
communication pattern is called "broadcast".  During write, it is only necessary to write 
data from a single process because each process should have an identical copy of the 
variable.   
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Figure 12-3:  Schematic of the input and output of a non-decomposed array.  On input, one process 
reads the data from disk.  The data are then replicated on all other processes.  On output, a single 
process writes the data to disk.   

Example 12-1 demonstrates unformatted I/O of both decomposed and non-decomposed 
variables.  SMS automatically translates the read (line 32) and write (line 28) statements 
for both decomposed arrays x and y and non-decomposed scalar scale to the 
appropriate parallel I/O operations.  When automatically generating parallel I/O 
operations, SMS uses information in the DISTRIBUTE directives to determine how to 
scatter, gather, or broadcast data.  Notice that any types of decomposed or non-
decomposed variables can be mixed in a single write or read statement.  It is not 
necessary to reorganize existing serial read or write statements to take advantage of 
automatic parallelization by SMS.   

[Include file: io.inc]

1 integer im, jm
2 common /sizes_com/ im, jm
3 CSMS$DECLARE_DECOMP(DECOMP_IJ, 2)

[Source file: binary.f]

1 program binary_io
2 include 'io.inc'
3 im = 10
4 jm = 5
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5 CSMS$CREATE_DECOMP(DECOMP_IJ, <im,jm>, <1,0>)
6 call write_data
7 end
8
9 subroutine write_data

10 include 'io.inc'
11 integer i, j
12 real scale
13 CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
14 integer x(im,jm), y(im,jm)
15 CSMS$DISTRIBUTE END
16 CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN
17 do j=1,jm
18 do i=1,im
19 CSMS$TO_GLOBAL(<1,i>, <2,j>) BEGIN
20 x(i,j) = (100 * i) + j
21 y(i,j) = mod(i,2)
22 CSMS$TO_GLOBAL END
23 end do
24 end do
25 CSMS$PARALLEL END
26 scale = -1.0
27 open (17,file='io1_out.dat',form='unformatted')
28 write (17) x, y, scale
29 close (17)
30
31 open (18,file='io1_out.dat',form='unformatted')
32 read (18) x, y, scale
33 close (18)
34 return
35 end

Example 12-1:  This program does output and input of both decomposed and non-decomposed data.  
No additional directives are required for the correct I/O to be performed, regardless of the number 
of processes. 

By default, SMS assumes unformatted files are stored in native FORTRAN binary 
format.  The default behavior can be modified using the following environment variables:   

SMS_READ_FORMAT
SMS_WRITE_FORMAT

The currently available (case insensitive) formats are:   

IBM
SUN
SGI
FUJITSU
HP
DEC
COMPAQ
IA32
MPI
MPI_EXTERNAL
EXTERNAL
SMS

In some cases, file formats with different names are actually the same format.  For 
example, SGI and SUN are really the same.  Note that MPI, MPI_EXTERNAL, 
EXTERNAL, and SMS all refer to the portable MPI I/O external format.  The advantage to 
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using this format is that any file written by an SMS program may be read by any other 
SMS program on any other machine.  This is true regardless of the number of processes 
used on either machine because SMS preserves serial data ordering.  To convert data files 
from one format to another, simply write a serial program that reads and writes the data, 
compile and link with SMS and then set the above environment variables appropriately.   

12.2 Formatted I/O 

SMS supports the formatted input and output of non-decomposed data without directives.  
Also supported is unformatted I/O via namelist of both decomposed and non-decomposed 
data.  Formatted I/O of decomposed variables by means other than namelist is not 
currently supported, so code segments that include this kind of I/O must be enclosed by a 
SERIAL directive (see Section 8).  In a future release of SMS, this use of SERIAL will 
become optional.   

12.2.1 Formatted Input 

Formatted input including namelists is handled automatically by SMS.  The user does not 
need to add any directives.  The only caveat is that input variables cannot be decomposed 
arrays unless a namelist is used.  In this case, a work-around is to enclose the formatted 
read statements within a SERIAL directive.  Since formatted reads typically occur 
infrequently during the course of a model run, this approach usually does not incur a 
significant performance penalty.   

12.2.2 Formatted Output 

The simple task of printing a message on the screen becomes complicated in a parallel 
program.  Consider the following simple print statement:   

print *,'HELLO'

There are no clear standard definitions of what will appear on the screen when a 
"parallel" print statement is executed.  Will each process print a separate message?  Will 
the separate messages appear on different lines on the screen?  Will all processes be 
forced to wait until the print is complete before useful work can continue?  If the 
statement were executed on three processes, we might see any of the following output:   

HELLO

HELLO
HELLO
HELLO

HHHEEELLLLLLOOO

HELLHEHLEOLOLLO

During the brief history of parallel computing, each of these possibilities has been 
implemented on at least one parallel machine.   
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SMS simplifies this situation by providing three "print modes" that allow the user to 
control the behavior of parallel print.  The modes are default, ASYNC, and ORDERED.  
These modes are selected using the PRINT_MODE directive.  The PRINT_MODE 
directive may only be used for formatted output to stdout.  This may be accomplished 
either by using PRINT statements or WRITE statements when the unit number is either 6 
or *.  (Note that units 0, 5, and 6 should not be opened in an SMS program because many 
Fortran compilers behave strangely when these units are connected to named files.)  The 
print modes are illustrated in Example 12-2.   

1 program print_modes
2 implicit none
3 integer, parameter :: im = 12
4 integer xmax, i
5
6 CSMS$DECLARE_DECOMP(dh, 1)
7
8 CSMS$DISTRIBUTE(dh, 1) BEGIN
9 integer, allocatable :: x(:)

10 CSMS$DISTRIBUTE END
11
12 CSMS$CREATE_DECOMP(dh, <im>, <0>)
13 allocate(x(im))
14
15 CSMS$SERIAL BEGIN
16 do i = 1, im
17 x(i) = i
18 end do
19 CSMS$SERIAL END
20
21 CSMS$PARALLEL(dh,<i>) BEGIN
22 xmax = 0
23 do i = 1,im
24 xmax = max(xmax,x(i))
25
26 if (x(i) .ge. 12) then
27 CSMS$PRINT_MODE(ASYNC) BEGIN
28 print *,'WARNING: x .ge. 12 !! '
29 CSMS$PRINT_MODE END
30 endif
31
32 end do
33 CSMS$PARALLEL END
34
35 CSMS$PRINT_MODE(ORDERED) BEGIN
36 CSMS$INSERT print *,'DEBUG: local maximum value = ',xmax
37 CSMS$PRINT_MODE END
38
39 CSMS$REDUCE(xmax,MAX)
40
41 write( *,900) 'maximum value = ',xmax
42 900 format(a, i4)
43 end

Example 12-2:  Program that illustrates the various print modes supported by SMS.   

When the serial code versions print_modes is run, the following is printed on the 
screen:   

>> print_modes
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WARNING: x .ge. 12 !!
maximum value = 12

When the parallel code is run on 1 process, the following is printed on the screen: 

>> smsRun –np 1 print_modes_parallel
WARNING: x .ge. 12 !!
DEBUG: local maximum value = 12

maximum value = 12

For 4 processes: 

>> smsRun –np 4 print_modes_parallel
WARNING: x .ge. 12 !!
DEBUG: local maximum value = 3
DEBUG: local maximum value = 6
DEBUG: local maximum value = 9
DEBUG: local maximum value = 12

maximum value = 12

The write statement on line 41 in Example 12-2, is printed using the default print mode.  
The default print mode is used for any print statement that is not enclosed by a 
PRINT_MODE directive.  It will cause the parallel code to print the same messages as 
the serial code in most cases.  Only one system-dependent designated process (the “root” 
process) will execute the print statement; the others will skip it and can immediately 
continue with useful computations.   

The print statement on line 36 is executed using the ORDERED print mode.  The 
ORDERED print mode may only be selected using the PRINT_MODE directive.  This 
mode causes one message to be printed on the screen for each process and guarantees that 
the messages always appear in the same order. It is most useful for debugging purposes.  
However, in order to guarantee message ordering, no process can continue until all 
processes have executed the print statement.  This means care must be taken that all 
processes will ALWAYS execute an ordered print or the program will hang.  For 
example, suppose we use the ORDERED print mode at line 27:   

if (x(i) .ge. 12) then
CSMS$PRINT_MODE(ORDERED) BEGIN

print *,'WARNING: x .ge. 12 !! '
CSMS$PRINT_MODE END

endif

In this case, we see the same results for the one-process run.  However, the four-process 
run produces the following results:   

>> smsRun –np 4 print_modes_parallel
DEBUG: local maximum value = 3
DEBUG: local maximum value = 6
DEBUG: local maximum value = 9
WARNING: x .ge. 12 !!

In this case, the program hangs (deadlocks) before the final message can be printed 
because the warning print statement is now an ordered-mode print that has been executed 
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by only one process.  The program will wait forever for the other processes to enter this 
print statement.  The default print mode is also inappropriate here because the warning 
message would not be printed if point 12 were not on the root process.  Deadlock would 
not occur, but the warning message would not be printed.   

The ASYNC (asynchronous) mode is the proper mode to use in cases like the printed 
warning statement on line 28 because there is no guarantee that all processes will execute 
the print statement.  In this mode, one message will appear on the screen for each process 
that executes the print statement.  Like the default mode, there is no process 
synchronization during asynchronous prints.  As a result, ordering of print statements 
may vary from one run to the next when ASYNC mode is used.  Like the ORDERED 
mode, the ASYNC print mode may only be selected using the PRINT_MODE directive.  
For example, suppose we use the ASYNC mode for line 35 instead of ORDERED. 

CSMS$PRINT_MODE(ASYNC) BEGIN
CSMS$INSERT print *,'DEBUG: local maximum value = ',xmax
CSMS$PRINT_MODE END

Running with four processes two times might produce the following results:   

>> smsRun –np 4 print_modes_parallel
DEBUG: local maximum value = 3
DEBUG: local maximum value = 6
DEBUG: local maximum value = 9
WARNING: x .ge. 12 !!
DEBUG: local maximum value = 12

maximum value = 12

>> smsRun –np 4 print_modes_parallel
DEBUG: local maximum value = 6
DEBUG: local maximum value = 3
WARNING: x .ge. 12 !!
DEBUG: local maximum value = 9
DEBUG: local maximum value = 12

maximum value = 12

Note that the ASYNC-mode prints can appear in any order and can even appear out-of-
order with other non-ASYNC-mode prints.  This can be confusing in some cases.  Also, 
the ASYNC mode does not work properly when the SMS program is being run in 
“serverless” mode (see Section 12.3.2).   

12.3  I/O Performance Tuning 

This section discusses methods for optimizing SMS I/O performance.   

Please note that the I/O components of SMS are currently being re-designed to 
improve performance and simplify optimization options.  Most of the environment 
variables that have been available to tune I/O performance will become obsolete in a 
future release.  Discussion of these “deprecated” features has been omitted from this 
version of the SMS Users Guide.  Please refer to an earlier version for discussion of 
deprecated features.   
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12.3.1 The SMS Server Process 

By default SMS designates an additional process, the “server” process, to handle all 
formatted and unformatted I/O operations.  This allows computations to be done 
concurrent with I/O operations and can improve the overall performance of an SMS 
program.  Figure 12-4 illustrates a program run using four compute processes and an 
SMS server process.   

 

Process 1 

Process 3 

Process 2 
Process 5 

Server Process 

Compute Processes

SMS Program Execution with a Server Process 

Process 4

 
Figure 12-4:  In this example, four processes are requested to run an SMS program.  By default, an 
additional process, the “server” process, will be used by SMS for I/O operations.   

12.3.2 Serverless I/O 

For small numbers of processors (approximately less than 8 depending on the amount of 
I/O), it may be beneficial to combine the server process functions with one of the 
computational processes.  This type of operation is called serverless I/O and is illustrated 
in Figure 12-5.   

If serverless I/O is used, the I/O functions that would normally be run on a separate 
process will be combined with one of the compute processes.  Serverless SMS can be 
requested through an environment variable given by the command:   

>> setenv SMS_SERVER_MODE serverless

On most machines, for small numbers of processors, where there is a one-to-one 
correspondence between processes and processors, serverless I/O will improve 
performance by making one more processor available to do computations.  However, 
when large numbers of processors are used, program execution will usually be faster with 
a server.   
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Figure 12-5:  An illustration of four SMS processes used to run a program without a server process.  
In this example, process P1 must handle both program computations and SMS server functions that 
include I/O operations.  While these operations occur, the other processes will be idle. 

12.3.3 The FLUSH_OUTPUT Directive 

During write operations when a server process is present, the server buffers the data to be 
output, re-orders any decomposed data into serial order, and then writes to disk in large 
blocks.  By default, any write to disk will be delayed until the buffer is full or the file is 
closed.  When this happens, buffers are "flushed" and their contents written to disk in 
large blocks.  

The environment variable SMS_CLOSE_MODE can be set to “require-flush” for 
improved user control of when SMS output buffers are flushed.  Then, performance 
improvement can be gained by controlling when these buffers are flushed using the 
FLUSH_OUTPUT directive.   This directive instructs the SMS I/O server process to 
flush the buffers immediately.  The FLUSH_OUTPUT directive should be placed after an 
output cycle is finished so the output will be done while the next cycle of computations is 
being done. 

The following code fragment shows how this directive can be used: 
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open (20,file='main_fields.dat',form='unformatted')
write (20) u,v,w,p,t
close (20)

open (30,file='moisture.dat',form='unformatted')
write (30) qs,qi,qr,qg,qw
close (30)

CSMS$FLUSH_OUTPUT
c useful computation ...

Example 12-3:  Proper placement of a FLUSH_OUTPUT directive. 

In this example, two files are written.  Useful computations will proceed while data is 
simultaneously re-ordered and written to disk.   
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13  “Sliced” Arrays 

When distribution of an array does not involve all decomposed dimensions, the 
distribution is called a “slice” and the array is referred to as a “sliced array”.  Currently, 
the exact manner in which a sliced array is distributed is poorly defined in SMS, so there 
are some limitations on their use.  One limitation is demonstrated in Example 13-1.  The 
DISTRIBUTE statement on line 6 of defines a sliced array whose first dimension is 
decomposed according to the second dimension of decomposition dh.  The first 
decomposed dimension of dh is not involved in the distribution.   

1 program slice
2 csms$declare_decomp(dh, 2)
3 csms$distribute(dh, 1, 2) begin
4 integer, allocatable :: u(:,:)
5 csms$distribute end
6 csms$distribute(dh, , 1) begin
7 integer, allocatable :: ubw(:)
8 csms$distribute end
9 im = 4

10 jm = 4
11 csms$create_decomp(dh, <im,jm>, <0,0>)
12 allocate(u(im,jm))
13 allocate(ubw(jm))
14 ubw = 0
15 csms$serial begin
16 do j = 1, jm
17 do i = 1, im
18 u(i,j) = (100 * i) + j
19 enddo
20 enddo
21 print *, 'After initialization, u(:,:) = '
22 do j = 1, jm
23 write(*,'(4i5)') (u(i,j),i=1,im)
24 enddo
25 csms$serial end
26 csms$parallel(dh, , <j>) begin
27 do j = 1, jm
28 csms$global_index(1) begin
29 ubw(j) = u(1, j)
30 csms$global_index end
31 end do
32 csms$print_mode(ordered) begin
33 print *, 'on each process: ubw = ', ubw
34 csms$print_mode end
35 csms$serial begin
36 print *, 'inside SERIAL, ubw = ', ubw
37 csms$serial end
38 csms$print_mode(ordered) begin
39 print *, 'after SERIAL, on each process: ubw = ', ubw
40 csms$print_mode end
41 csms$parallel end
42 end

Example 13-1:  This program illustrates limitations of sliced arrays. 
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When this program is run as a serial code, the following output is printed:   

After initialization, u(:,:) =
101 201 301 401
102 202 302 402
103 203 303 403
104 204 304 404
on each process: ubw = 101 102 103 104
inside SERIAL, ubw = 101 102 103 104
after SERIAL, on each process: ubw = 101 102 103 104

When the SMS parallel code is built, ppp prints a warning message:   

"./slice_sms.f.tmp", line 39:39 WARNING: Decomposed slice array should
be used carefully. See the SMS Users Guide for more information.

When the SMS program is run on four processes, then following output is printed:   

After initialization, u(:,:) =
101 201 301 401
102 202 302 402
103 203 303 403
104 204 304 404
on each process: ubw = 101 102
on each process: ubw = 0 0
on each process: ubw = 103 104
on each process: ubw = 0 0
inside SERIAL, ubw = 0 0 0 0
after SERIAL, on each process: ubw = 0 0
after SERIAL, on each process: ubw = 0 0
after SERIAL, on each process: ubw = 0 0
after SERIAL, on each process: ubw = 0 0

Notice that the values of ubw are correct before the SERIAL directive but incorrect 
afterwards.  This is due to the fact that SMS cannot tell if ubw has not been correctly 
initialized on all processes.  The GLOBAL_INDEX directive on line 28 causes ubw to be 
initialized only on processes that contain global index 1 in the first decomposed 
dimension.  Had ubw been initialized outside of a GLOBAL_INDEX directive, the 
SERIAL directive would have worked as expected.  As is the case with non-decomposed 
variables, SMS expects sliced arrays to be replicated across all processes.  For sliced 
arrays, replication must occur across processes that share the same global indices in the 
remaining decomposed dimension.  For example, ubw would be replicated if ubw(j) 
were the same on every process that contains global index j in its interior region.  The 
SERIAL directive will not work for sliced arrays that are not replicated.  The I/O and the 
REDUCE, TRANSFER, and COMPARE_VAR directives have the same limitation.  
(There are plans to extend the DISTRIBUTE directive to support non-replicated sliced 
arrays.  These will be implemented in a future release of SMS if there is sufficient 
interest from users.)   
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14 Program Termination 

Parallel programs using the SMS run-time system require special handling to ensure all 
processes exit normally.  An SMS control process is often used to manage the child 
processes that are spawned through the smsRun command to execute a program.  Two 
types of program termination are supported by SMS:  a normal exit and an abort.  When a 
program exits normally, the SMS control process will wait until every processes’ 
computations, communications and I/O are complete before exiting.  A program abort 
will not guarantee the completion of outstanding operations or an orderly termination of 
processes. 

14.1 Automatic Code Generation for Termination 

By default, SMS automatically generates code to abort whenever a Fortran “stop” 
statement is encountered.  SMS also generates a normal exit whenever a program “end” 
statement is encountered.  Consider the following program:   

program main

do ii=0, num_iter
call time_steps(ii,status)
if (status .eq. ABORT) then

print *,’ Model Run failed at iteration: ‘,ii
stop

endif
enddo

print *,’ Model Run Successfully Completed’
stop
end

Example 14-1:  Automatic Code Generation by SMS will cause this  program to always abort. 

Since the Fortran “stop” appears before the line before the end program statement, SMS 
will generate code to abort the parallel run.  During code translation the following 
warning message will appear when source contains a Fortran stop statement:   

WARNING: Program abort detected.

Since the intent of the original code in this case is to exit normally from the program, two 
actions can be taken to ensure this happens in the SMS-generated source.  Either the 
second “stop” statement (above the “end”) should be removed, or the EXIT directive 
should be used as illustrated in the next section.   

14.2 EXIT Directive 

EXIT is used to control the run-time behavior of an SMS program. This directive, when 
inserted just before a “stop” statement, will instruct SMS to generate code to exit rather 
than abort.  The proper placement of this directive is illustrated in Example 14-2.  In this 
example, SMS will generate an ABORT at line 7 and a normal exit at line 12.   
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1 program main
2
3 do ii=0, num_iter
4 call time_steps(ii,status)
5 if (status .eq. ABORT) then
6 print *,’ Model Run failed at iteration: ‘,ii
7 stop
8 endif
9 enddo

10
11 print *,’ Model Run Successfully Completed’
12 CSMS$EXIT
13 stop
14 end

Example 14-2:  Using CSMS$EXIT to override automatic translations 

14.3 MESSAGE Directive 

MESSAGE, is used to send a message to the user at run-time and optionally terminate 
execution of the program when it is encountered.  This directive is useful when the user 
wishes to avoid unnecessary parallelization of code they believe is never executed.  Three 
run-time actions are available to the user of MESSAGE: ABORT, terminates execution 
after writing the given message to stderr, WARN writes the given text to stderr, and 
INFORM writes the text to stdout. 

if (condition_ever_met) then
CSMS$MESSAGE(ABORT,'COMPS: THIS CODE HAS NOT BEEN PARALLELIZED BY SMS')

call comps(a,b,c,d,NX,NY)
endif

Example 14-3:  Using MESSAGE to output run-time messages. 

In this example, the programmer believes the subroutine comps is never executed so 
rather than parallelizing it, MESSAGE is used.  Since ABORT is specified, SMS will 
terminate the execution of this program after the message is output to stderr.   
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15 Debugging 

SMS provides two directives that aid the debugging process.  COMPARE_VAR enables 
the user to compare the values of variables between simultaneous runs of an SMS 
program on different numbers of processes.  This helps the user quickly pinpoint the 
source of an error that causes solutions to diverge.  Sometimes, errors are due to missing 
or incorrectly placed exchanges.  The CHECK_HALO directive helps identify these 
cases by flagging halo regions that are not updated as expected.   

15.1 Using COMPARE_VAR To Find Parallelization Errors 

Example 15-1 shows an application of the COMPARE_VAR directive.  In this code, a 
one process run of the code yields: 

Running program check_var
i, y(i)

9 34.00000
10 38.00000
11 42.00000
12 46.00000

However, a 2 process run yields a different answer: 

Running program check_var
i, y(i)

9 34.00000
10 17.00000
11 23.00000
12 46.00000

1 program check_var
2 parameter (IM = 20)
3 CSMS$DECLARE_DECOMP(dh, 1)
4 CSMS$DISTRIBUTE(dh, 1) BEGIN
5 real, allocatable :: x(:)
6 real, allocatable :: y(:)
7 CSMS$DISTRIBUTE END
8
9 CSMS$CREATE_DECOMP(dh, <im>, <1>)

10
11 print *, 'Running program check_var'
12 allocate(x(im))
13 allocate(y(im))
14 x = 0.0
15
16 CSMS$PARALLEL(dh, <i>) BEGIN
17 do i = 1, im
18 x(i) = i*2 - 1
19 end do
20
21 y = 0.0
22
23 do i = 2, im-1
24 y(i) = x(i-1) + x(i+1)
25 end do
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26
27
28 CSMS$SERIAL BEGIN
29 print *, 'i, y(i)'
30 do i = 9, 12
31 print *, i, y(i)
32 end do
33 CSMS$SERIAL END
34
35 CSMS$PARALLEL END
36 end

Example 15-1:  Application of the COMPARE_VAR directive. 

To track down the problem, the user can insert a COMPARE_VAR directive at line 26 as 
follows: 

CSMS$COMPARE_VAR(y(2:im-1), 'after y assignment')

Then the user can run the code as follows: 

>> setenv SMS_SERVER_MODE serverfull
>> smsRun –np 1 check_var –np 2 check_var -cv

This tells SMS to simultaneously launch a 1-process and 2-process run of the program 
check_var and compare results (“-cv”).  When the code generated by the 
COMPARE_VAR directive is reached, each run gathers y into a global equivalent, 
exchanges its values with the other run, and then compares them in the specified range 
(2:im-1).  (If no range is specified, all elements of y are compared.)  If the variable is a 
scalar or a non-decomposed array then it is immediately compared; no gather operation is 
required.  In this example, since the variables differ, the program terminates with the 
following error message:   

NP=1: Running program check_var
NP=2: Running program check_var

COMPARE_VAR failed :y after y assignment
Variable values for first, second run: 38.00000 17.00000

Incorrect at indices = 10

The difference occurs because an exchange is needed prior to the loop starting at line 23.  
The character string, “after y assignment”, helps pinpoint the location of the difference.  
The error message also identifies the name of the variable that is in error in case more 
than one variable is specified in the directive. It also prints out the global array location 
and variable values of the first point in the array that differs.  Both runs immediately exit 
when an error is found.  Notice that the print statement at line 11 appears twice.  One 
instance is labeled with “NP=1” to indicate it came from the one-process run; the other is 
labeled with “NP=2” for the two-process run.   

Several additional points should be made about COMPARE_VAR.  First, if the user runs 
the program in the standard fashion:   

smsRun –np 2 check_var
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then the result is the same as if the COMPARE_VAR directive had not been included in 
the code at all.  Second, when running with COMPARE_VAR enabled, any output to 
files is turned off to avoid generation of incorrect data that could occur when the two runs 
simultaneously write to the same file.  Third, SMS must be run with a server process for 
the comparison to be made properly.  Fourth, if the user wishes to use configuration files 
while doing a comparison run, the SMS launch line looks as follows:   

smsRun –cf config1 check_var –cf config2 check_var -cv

Fifth, the user should avoid putting COMPARE_VAR directives inside a decomposed 
loop.  For example, consider the following code fragment:   

CSMS$PARALLEL(dh, <i>) BEGIN
do i = 1, 2

x(i) = x(i) + y(i)
CSMS$COMPARE_VAR(x, “Compare 1”)

end do

Suppose simultaneous runs on 1 and two processes are compared.  Each process in the 2 
process run will call COMPARE_VAR once.  However, the single process in the 1 
process run will execute the COMPARE_VAR code twice.  This will cause a hang or 
possibly an error message if a subsequent COMPARE_VAR directive appears in the 
code.  Sixth, as a reminder, bitwise-exact reductions should be enabled when using 
COMPARE_VAR.  Otherwise, round-off differences in summations will cause 
COMPARE_VAR to indicate the presence of a spurious error.  Seventh, more than one 
variable can be compared in one directive.  For example: 

CSMS$COMPARE_VAR(x, y, “Compare 2”)

It is also possible to use COMPARE_VAR to verify that the parallel and serial code 
solutions are identical.  To do this, translate and compile the code as before:   

>> ppp prog.f
>> f90 prog_sms.f –o par_code

Next, translate the code with the --CompareOnly option and compile:   

>> ppp --CompareOnly prog.f
>> f90 prog_sms.f –o serial_code

The –CompareOnly flag tells SMS to ignore all directives except for COMPARE_VAR.  
I/O statements are also left un-translated.  Finally, the two executables can be 
simultaneously launched as follows:   

>> smsRun –np 1 serial_code –np 2 par_code -cv

As before, when a difference is found, it will be flagged and the programs will terminate.  
WARNING: this use of COMPARE_VAR may not work on all systems!   
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15.2 Debugging Adjacent Dependencies: CHECK_HALO 

The analysis of adjacent dependencies in a serial code and the process of accurately 
placing EXCHANGE and HALO_COMP directives are highly prone to error.  To help 
the user track down such errors, the CHECK_HALO directive and associated 
SMS_CHECK_HALO environment variable can be used to check if all or part of a halo 
variable is up-to-date.  Suppose, in Example 5-4, the user forgot to include the 
HALO_COMP directives on lines 43 and 48.  When the program is run, it does not 
produce the correct answer for ysum.  The user can observe that the loop on lines 52-54 
requires one point of the lower and upper halo regions of b and c be up-to-date.  To 
check this assumption, the following directive can be added at line 51:   

CSMS$CHECK_HALO(b<1,1>, c<1,1>, 'LOOP 52')

If the SMS_CHECK_HALO environment variable is set to "ON", the generated code 
checks if the afore-mentioned halo points are up-to-date.  In this case, since the halo 
regions are not up-to-date, the SMS program will generate the following error message 
and terminate:   

LOOP 52 Halo check failed for var : b

Suppose the HALO_COMP directives are included as shown on lines 43 and 48. This 
time the check passes so no error messages are generated and the program continues.  
Suppose the user includes the HALO_COMP directives on lines 43 and 48 and specifies 
the CHECK_HALO directive as follows:   

CSMS$CHECK_HALO(b, c, 'LOOP 52')

This form of the directive tells SMS to check the entire halo region.  Since, for the lower 
and upper halo regions, only the inner layer of halo points is up-to-date, the program will 
terminate with the same error message.   

The CHECK_HALO directive can be added to the code on a permanent basis.  When 
SMS_CHECK_HALO is “ON”, CHECK_HALO adds costly communication.  However, 
if the SMS_CHECK_HALO environment variable is set to something other than "ON" 
then the halo checks are skipped and the CHECK_HALO directives do not degrade 
performance.  If, after a code change, the program generates the wrong answer, the halo 
checks can be turned back on to help isolate the problem.  Also, note that except for the 
character string, the syntax for CHECK_HALO is identical to EXCHANGE.   
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16 Building a Parallel Program 

16.1 Overview 

This section describes how to use the PPP to translate Fortran code into SMS parallel 
source code.  Output files, named automatically by PPP, will be introduced in Section 
16.2.  Several command line options to PPP are described in Section 16.3.  In Section 
16.4, a simple makefile is described which can be used to build a serial or SMS parallel 
code.  In addition, various relevant compiler and linker options are discussed in this 
section. Building incorrect parallel source using PPP can result in both syntactic and 
semantic errors that must be corrected.  Section 16.5 will discuss how to interpret these 
PPP generated messages.  Finally, Section 16.6 will describe possible compiler errors due 
to namespace conflicts from PPP-generated source code.   

16.2  PPP-Generated Output Files 

Output files generated by PPP are named automatically.  Include files will be named by 
appending “.SMS” to the original file name (e.g. params.h becomes 
params.h.SMS).  All other source files will be named by appending “_sms” to the 
body of the original filename (e.g. main.f becomes main_sms.f).  Intermediate files 
are also generated during the code translation process.  These files, appended with the 
suffix “.tmp”, remain after PPP translation.  When errors are detected in the code during 
code parallelization, PPP messages will be generated that reference these intermediate 
files (see Example 16-7).  However, any corrections should still go into the original file 
from which translated code was generated by PPP.   

16.3 Building SMS Parallel Source Code 

The transformation of Fortran code into parallel SMS code requires the use of PPP.  PPP 
translations are based on both its analysis of the original code and the SMS directives that 
were inserted into the code.  This section describes how to use PPP to create parallel code 
at the command line, defines what code generation options are available, and gives some 
examples. 

16.3.1 PPP Command Line Options 

All PPP code translations are managed through a command line script called ppp.  A 
single file can be processed at a time and no inter-procedural analysis is done.  PPP is 
invoked by:  ppp [options] filename.  Command line options currently 
available are: 

--checkfirst A useful optimization to avoid PPP processing of
files that do not require translation. This
option can be used to allow more flexible use of
suffix rules (see Section 16.4). If no I/O
statements or directives are found, no PPP
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processing is done and the following message is
output:
File has no directives - SKIPPING PPP PROCESSING

--comment Leave replaced lines in the code as Fortran
comments. This can be useful for debugging the
parallel code. Note: the string used to comment
out the original code is "C-PPP".

--CompareOnly Only translate COMPARE_VAR directives. Note
that I/O statements will not be translated (see
Section15.1).

--ExtendedSource Allow valid Fortran source to extend beyond 72
characters.

--Fcommon file Name of an optional include file that is not
part of the original source code. Typically it
will contain data decomposition directives (see
Example 16-4).

--Finclude file Name of an included file to be parallelized that
is referenced in the source file being
translated by PPP (see Example 16-2).

--Flookup file Name of file containing mapping of module names
to source code files containing them (see
Example 16-5).

--Fmodule file Name of module that is not part of original
source code. Typically, it will contain data
decomposition directives (see Example 16-5).

--Fvisible files Name(s) of file(s) to be made visible to PPP in
order to correctly translate the current file.
This option is only required for a series of
interdependent include files (see Example 16-3).

--header Indicates that the file that is about to be
translated is a Fortran include file.

--help Prints the command line options
--IncludePath path Include file search path. Similar to -I F77/F90

compiler option
--r8 Indicates that an SMS program to be run on a

machine whose normal default is 4 byte real
numbers will be, instead, compiled so that the
default is 8 byte real numbers.

--Verbose level Controls the output of PPP diagnostic and code
analysis messages. Errors, Warnings and Notes
are output based on the verbose level. (see
Example 16-8).

16.3.2 Examples 

Example 16-1 shows how to build a parallel version of an include file: 

>> ppp --header params.h

[params.h]

parameter(nx=50, ny=50)

CSMS$DECLARE_DECOMP(decomp, <nx, ny>)

C global variable declarations ...

Example 16-1:  Building any Fortran include file requires the --header option. 

Example 16-2 shows how to use the parallel version of an include file when translating 
an executable code file.  Since the translation of params.h will result in an SMS parallel 
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version of this file (params.h.SMS), we use the --Finclude option to ensure this include 
file reference will be changed in the parallel version of dynamics.f. 

>> ppp --Finclude=params.h --comment dynamics.f
[dynamics.f]

program dynamics
include ‘params.h’

c Fortran code ...
end

GENERATED PARALLEL PSEUDO CODE

[dynamics_sms.f]
program dynamics

C-PPP include ‘params.h’
include ‘params.h.SMS’

c Fortran code
end

Example 16-2:  The –Finclude option is used to specify the Fortran include file params.h which is 
referenced in the file (dynamics.f) being translated.   This ensures the parallel (translated) include file 
will be referenced in the translated output of dynamics.f. 

Example 16-3 illustrates the use of the --Fvisible option. In this example, the file 
“variables.h” requires information about the data decompositions listed in “params.h” to 
correctly translate the declarations “a” and “b” enclosed within the DISTRIBUTE 
directive.    In particular, the array dimensions nx, ny and nz must be translated to 
process local sizes using information provided by DECLARE_DECOMP.  The  --
Fvisible option is used is used to make params.h “visible” to variables.h. 

>> ppp --header params.h
>> ppp --Fvisible=params.h --header variables.h
>> ppp --Finclude=params.h --Finclude=variables.h main.f

[params.h]

parameter(nx=50, ny=50)
CSMS$DECLARE_DECOMP(decomp, <nx, ny>)

C global variable declarations ...

[variables.h]
CSMS$DISTRIBUTE(decomp, nx, ny) BEGIN

real a(nx, ny, nz)
real b(nx, ny, nz)

CSMS$DISTRIBUTE END

[main.f]
program main
include ‘params.h’
include ‘variables.h’

c other code
end

Example 16-3:  The --Fvisible option is used when inter-dependent include files must be translated. 
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In Example 16-1, the DECLARE_DECOMP was added to an include file that already 
existed (params.h).  If the user prefers to insert the SMS directives into a separate 
“directives” file, the option --Fcommon is used instead of --Finclude.  Example 16-4 
illustrates the --Fcommon option.   

>> ppp --header directives.inc
>> ppp --Fcommon=directives.inc dynamics.f

[directives.inc]
CSMS$DECLARE_DECOMP(decomp, 2)

[dynamics.f]
program main

c more Fortran code
end

GENERATED PARALLEL PSEUDO CODE
program main
include ‘directives.inc.SMS’
include ‘params.h’

c more Fortran code
end

Example 16-4:  In this example DECLARE_DECOMP, defined in “directives.inc”, is required by 
“dynamics.f” when the parallel executable is built.  It is not needed for a serial build.   

Example 16-5 shows how to handle Fortran 90 modules in SMS.  The 
DECLARE_DECOMP directive is inserted into a separate “directives” module in a way 
analogous to the include file in Example 16-4.  In addition, the main program uses a 
module needed by the serial code. 

[decomp.F]
1 module decomp
2 CSMS$DECLARE_DECOMP(dh, 2)
3 end module decomp

[m1_module.F]
1 module m1
2 CSMS$DISTRIBUTE(dh, 1, 2) BEGIN
3 real, allocatable :: u(:,:,:)
4 CSMS$DISTRIBUTE END
5 end module m1

[main.F]
1 program USE_MODULES
2 use m1
3 integer, parameter :: im = 10
4 integer, parameter :: jm = 20
5 integer, parameter :: km = 30
6
7 CSMS$CREATE_DECOMP(dh, <im,jm>, <1,1>)
8
9 allocate(u(im,jm,km))

10 CSMS$PRINT_MODE(ORDERED) BEGIN
11 print *, size(u,1), size(u,2), size(u,3)
12 CSMS$PRINT_MODE END
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13 end

[my_lookup_file]
decomp decomp.F
m1 m1_module_cpp.f

Example 16-5:  Code and module look-up file illustrating how SMS handles Fortran 90 modules.  See 
text for explanation.   

To handle this code correctly, the decomposition module file must be translated first:   

>> ppp decomp.f

Notice that the “--header” option  is NOT used in this case in contrast to the case where 
an include file is translated.   

Next, the module file is translated.  Since the module file contains reference to the 
decomposition, “dh”, the decomposition module must be made visible to SMS during 
translation.  This is done with the “–Fmodule=decomp” option.  This option tells SMS to 
insert “use decomp” in the translated version of the module file.  SMS must also know 
the mapping of modules to the files that contain them.  In this case, module decomp is 
contained in file decomp.F.  The lookup table specifies that mapping.  The file 
containing this look-up table must also be specified when translating m1_module.F.  
The full command is : 

>> ppp –Fmodule=decomp --Flookup=my_lookup_file m1_module.F

Finally, the command line for translating main.F is: 

>> ppp –Fmodule=decomp --Flookup=my_lookup_file main.F

16.4 Building SMS Programs 

A simple makefile is presented to aid the user in building an SMS program.  The 
environment variable “SMS” must be set to the location where the SMS software has 
been installed.  This can either be done explicitly in the Makefile (line 5) or via setenv 
prior to running make (e.g. setenv SMS pathname).   

1 # standard make file used to build serial or SMS parallel
2 # executables
3 #
4 .SUFFIXES: .f .o
5 SMS = /usr/local/sms
6
7 # system-specific compilation flags (for a Compaq Alpha EV67)
8 FC = mpif90
9 FFLAGS = -O4 –arch host –tune host -fixed -I$(SMS)/include

10
11 # SMS link libraries
12 LIBS = -L$(SMS)/lib -lsms -lmpi
13
14 # PPP specific options set here
15 PPP = $(SMS)/bin/ppp
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16 PPP_FLAGS = --Finclude=params.h --Finclude=variables.h --comment \
17 --checkfirst
18 PPP_HEADER_FLAGS = --header --comment
19
20 # include files
21 INCLUDES = params.h variables.h globals.h
22 PINCLUDES = ${INCLUDES:.h=.h.SMS}
23
24 # object files
25 OBJS = file1.o file2.o file3.o
26
27 TARGET = par_prog
28
29 # executable
30 $(TARGET): $(PINCLUDES) $(OBJS)
31 $(FC) -o $(TARGET) $(OBJS) $(FFLAGS) $(LIBS)
32
33 # suffix rules
34 .f.o: $(PINCLUDES)
35 $(PPP) $(PPP_FLAGS) $*.f
36 $(FC) -c $(FFLAGS) $*_sms.f
37 /bin/mv –f $*_sms.o $*.o
38
39 # include file translations
40 params.h.SMS: params.h
41 $(PPP) $(PPP_HEADER_FLAGS) params.h
42
43 variables.h.SMS: variables.h params.h
44 $(PPP) $(PPP_HEADER_FLAGS) --Fvisible=params.h variables.h
45
46 clean:
47 /bin/rm –f $(TARGET) *_sms.f *.SMS *.o *.tmp

Example 16-6:  A makefile for an SMS program.   

16.4.1 Makefile Compiler and Linker Options 

The Fortran compiler flags (FLAGS on line 9) are set for a Compaq Alpha EV67.  Other 
systems will require different options.  A makefile provided in the SMS distribution 
($SMS/lib/makefile.header) gives recommended compilation flags (found in variable 
STD_OPT_FLAGS) that should be used when modifying FFLAGS for a different target 
machine.   

16.4.2 Include File Handling 

Include files are listed in the makefile variable INCLUDES.  Parallel include files (line 
22) translated using SMS are built using the explicit targets params.h.SMS and 
variables.h.SMS (lines 40-44).  Notice the PPP command to build variables.h.SMS (line 
44) contains the --Fvisible option in addition to the standard PPP flags defined by: 
PPP_HEADER_FLAGS at line 18.  Since variables.h.SMS requires information from 
params.h for proper translation, this option is required (see Example 16-3). 

PPP_FLAGS (lines 16-17) lists the include files that are translated by PPP via the --
Finclude option.  This option is required to ensure any references to these files in Fortran 
source will be modified to their parallel filename (see Example 16-2).   
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16.4.3 Building the Executable 

To build the SMS parallel executable “par_prog” using this makefile, simply run make:   

>> make

Translated source code is written to the file “file1_sms.f”.   

16.5 PPP Error Reporting 

Two types of errors are reported by PPP: parsing errors and semantic errors. Parsing 
errors must be corrected before further translations of the input file are permitted.  
Semantic errors are reported as errors, warnings or notes.  These messages can be 
controlled through the --verbose option of PPP (see Section 16.5.2).   

16.5.1 Parsing Errors 

Parsing errors occur when PPP cannot resolve the Fortran source code to the grammar 
defined by the SMS directives (refer to the SMS Reference Manual), the Fortran 77 
language, and currently supported Fortran 90 syntax.  Further details about language 
extensions supported by SMS can be found at:   

http://www-ad.fsl.noaa.gov/ac/SMS_Supported_Fortran_Features.html 

The parser currently supports statements or SMS directives that are up to 500 characters 
in length.  Multiple statement lines are collapsed and white space is removed before 
statements are parsed.  Statements longer than 500 characters will not be parsed correctly.   

The form of a parsing error message is:   

<filename> <line> <column> <error type> <message>

filename - name of file being parsed
line - line number
column - column number in which error occurred
error type - types are:

ERROR, WARNING, NOTE
message - diagnostic message

An example of a PPP-generated parsing error is shown in Example 16-7.   

1 CSMS$DECLARE_DECOMP(spec_dh,<jtrun>)
2 CSMS$DISTRIBUTE(spec_dh, jtrun) BEGIN
3 real*8 cc(jtrun), bb(jtrun)
4 CSMS$DISTRIBUTE END
5
6 CSMS$PARALLEL(spec_dh, m) BEGIN
7 do 3 m=2, jtrun, 2
8 cc(m) = cc(m) + bb(m)
9 3 continue

10

http://www-ad.fsl.noaa.gov/ac/SMS_Supported_Fortran_Features.html
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11 C CSMS$PARALLEL END is missing
12
13 end

Example 16-7:  Code that generates a PPP parsing error. 

PPP generates the following error message:   

"Loops_sms.f.tmp" 13 501 ERROR: Syntax error
"Loops_sms.f.tmp" 13 501 NOTE Parsing resumed here

This message indicates the parser failed in the file Loops_sms.f.tmp at line 13 
column 501.  A parsing error occurring at column 501 indicates no resolution of the 
statement to the grammar by the end of the line.  In the example, the parser expects a 
PARALLEL END directive before the end of the file.  Naturally, the error should be 
corrected in the original file (Loops.f) rather than the PPP-generated file. 

16.5.2 PPP Diagnostic Messages 

Three levels of diagnostic messages are reported by PPP.  A PPP ERROR is reported 
when a section of code targeted for translation contains a syntax or semantic error.  A 
PPP WARNING is reported when PPP suspects that it may generate an incorrect 
translation.  A PPP NOTE identifies a place where a particular type of transformation 
occurred or SMS limitation was detected.  By default, all PPP ERROR messages will be 
output.  Control of diagnostic messages is handled through the PPP command line option:  
“--verbose = <value>”.  Three verbose options are supported:   

value message domain

1 PPP ERRORS only (DEFAULT)
2 PPP ERRORS and WARNINGS only
3 PPP ERRORS, WARNINGS and NOTES

While the error messages should always be addressed, warning messages may also be 
useful for detecting potential problems.  For example, the code segment in Example 16-8 
below causes PPP to generate the following important warning message:   

./IO.f.tmp” 11 13 WARNING: This variable, decomposed by CSMS$DISTRIBUTE,
is being used outside of a parallel region.

This warning message indicates a problem on line 11, column 13 of the PPP-generated 
file IO.f.tmp (which is not shown).  The variable cc was defined to be a distributed 
array (using DISTRIBUTE) but is being referenced outside a parallel region 
(PARALLEL).  Further explanation on the use of these directives can be found in Section 
2.3.   

>> ppp --verbose=2 IO.p

1 CSMS$DISTRIBUTE(dh, m, n) BEGIN
2 real cc(m,n)
3 CSMS$DISTRIBUTE END
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4 do i = 1, m
5 do j = 1, n
6 cc(i,j) = 0.0
7 enddo
8 enddo
9

10 c more code ...

Example 16-8:  Code that generates a WARNING because the decomposed variable “cc” is being 
used outside of a parallel region. 

16.6 Compilation Errors 

During the translation process PPP generates new variables for some translations.  PPP 
variables are either automatically generated or defined explicitly by PPP.  Explicitly 
defined names will always contain a double underscore in their name (e.g. ppp__status).  
To avoid compiler errors due to name space conflicts, avoid using variable names with 
double underscores in them. For example, the serial code cannot contain a declaration of 
a variable named ppp__status because PPP translation explicitly declares a variable 
named ppp__status for its own use.  A compilation error would result because two 
variables would be declared with the same name.   
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17 Running an SMS Program 

17.1 Introduction 

Once a program has been translated into SMS parallel code (Section 16.3) and linked to 
the appropriate libraries (see Section 16.4), it can be run on one or more processes using 
the SMS program launcher smsRun.  The standard syntax for smsRun is: 

>> smsRun –np numprocs execname

By default, SMS uses an additional server process to perform I/O operations, and provide 
overall management and control services for the other processes (see Figure 12-4).  For 
example, to run the executable test with two processes and one server process, the user 
would enter: 

>> smsRun –np 2 test

It is possible to take advantage of the idle compute cycles available on the server process 
by setting SMS environment variable SMS_SERVER_MODE to serverless.  This will 
permit computational and management functions to co-exist in a single process.  This 
option is beneficial when only a small number of processes are available.  However, as 
the numbers of processes grow, the cost of performing both server functions and 
computations will limit the performance of the other dependent processes.  

Figure 12-4 assumes a single process is run on each processor.  However, SMS permits 
the user to request more processes (using smsRun) than available processors.  For 
example if my_program was run with 20 processes 

>> smsRun –np 20 my_program

on a system with only 16 processors, five processors would contain two processes, one 
would contain the server process, and the rest would each contain a single process 
designated to run the program.  This is a bad idea because performance will suffer 
whenever multiple processes are scheduled on a single processor on most machines.   

17.2 Optional Command Line Arguments 

Several optional arguments to smsRun are supported.  The –cf option is used to gain 
more control over process layout as described in Section 10.1.  In the example below, 
program my_program is run using the process layout specified in configuration file 
my_config:   

>> smsRun –cf my_config my_program

The –cv option is used to assist debugging by turning on COMPARE_VAR directives as 
described in Section 15.1.  In the first example below, program my_program is run 
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simultaneously on 1 and 9 processes.  Arrays specified in COMPARE_VAR directives 
are compared on-the-fly.  If a difference is found, execution is halted and an error 
message is printed.  In the second example, different executables are loaded (useful for 
comparing a serial run to a parallel run or for testing static memory codes that use 
minimum memory) and the second program uses a configuration file.   

>> smsRun –np 1 my_program –np 9 my_program -cv
>> smsRun –np 1 my_program1 –cf my_config9 my_program9 -cv

Another option, -sms-, allows the user to specify machine-specific arguments to the 
underlying communication layer (e.g. MPI, SHMEM) directly.  All arguments that follow 
this option will be ignored by SMS and passed directly to the communications software.  
The following command illustrates a way to pass the run-time option -mpi_special 
to the underlying program launcher (which is mpirun when SMS is built using MPI):   

>> smsRun –np 3 my_program -sms- -mpi_special

Information about other machine-specific options for smsRun is available at the 
following SMS web site:   

http://www-ad.fsl.noaa.gov/ac/SMS_Run_Options.html 

17.3 Run-time Environment Variables 

Several environment variables can also be set to control the run-time behavior of SMS.  
The following environment variables are available: 

SMS_BITWISE - Set to “EXACT” to use bit-wise exact reductions
(see Section 7.2)

SMS_CHECK_HALO - Set to “ON” to enable checks of halo regions
specified by CHECK_HALO directives (see
Section 15.2).

SMS_CLOSE_MODE - Use to improve output performance (see
Section 12.3.3).

SMS_IO_FORMAT - Use to specify file format for files that are read
or written by SMS.

SMS_READ_FORMAT - Use to specify file format for files that are read
by SMS programs (see Section 12.1).

SMS_SERVER_MODE - Set to “SERVERLESS” to avoid using a server process
(see Section 12.3.2).

SMS_WRITE_FORMAT - Use to specify file format for files that are
written by SMS programs (see Section 12.1).

SMS_XFERMODE - Use to choose optimal communication patterns for
TRANSFER. Options are: “LOGN” and “ORIGINAL”.

17.4 Run-time Error Messages 

When an error occurs in an SMS program, execution will usually terminate and SMS will 
generate an informational message describing the source file name, line number, and a 
brief summary of the problem.  A complete set of SMS run-time error messages is 
available at the following SMS web site: 

http://www-ad.fsl.noaa.gov/ac/SMS_Run_Options.html
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http://www-ad.fsl.noaa.gov/ac/SMS_Messages.html 

When the code in Example 3-2 is run with 2 processes, the following error message is 
generated (as seen in Section 3.3): 

Process: 1 Error at: ./decomp_ex4_sms.f:10.1
Process: 1 Error status= -2202 : USER DECLARED STATIC ARRAY IS TOO

SMALL.
Process: 1 Aborting...

The first line of the error message indicates the file name and location within the file 
where the problem occurred.  PPP-generated code frequently uses sub-numbering to 
handle multiply generated calls to SMS routines that stem from the same line of original 
code.  In this example, a run-time error was detected by SMS at line 17 in code generated 
by the directive CREATE_DECOMP that can be found in temporary file: 
decomp_ex4_sms.f.tmp (not shown). 

The second line gives the SMS error message.  The error messages reflect the incorrect 
sizing of the decomposition decomp, declared by DECLARE_DECOMP and initialized 
by CREATE_DECOMP. 

Once the problem is understood corrections to the code can be made.  These corrections 
should go into the original file (in this case decomp_ex4.f) not in the temporary file 
where the problem was detected and probably diagnosed.  Once changes are made, PPP 
can be executed to re-translate the input file from which a fresh executable can be built 
and tested.   

http://www-ad.fsl.noaa.gov/ac/SMS_Messages.html
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